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To the editor:

Decreased hepcidin expression in murine �-thalassemia is associated with suppression of
Bmp/Smad signaling

�-thalassemia is a genetic disorder of hemoglobin production charac-
terized by ineffective erythropoiesis and anemia.1 Iron overload,
a major source of morbidity, results from inappropriately low
expression of the gene encoding hepcidin (Hamp1).1 Hamp1 controls
plasma iron concentration by facilitating the degradation of the

ironeffluxprotein ferroportin.2 Inhealthy individuals,hepcidin istranscrip-
tionally responsive to iron via bone morphogenetic protein (Bmp)/Smad
pathway-mediated phosphorylation of Smad 1,5,8.3 Phosphorylated
Smad 1,5,8 is an essential component of the transcriptional complex that
induces Hamp1 expression in response to iron.4 We investigated the

Figure 1. Bmp/Smad signaling is hyporesponsive to iron in �-thalassemic mice. (A) Liver iron concentrations (�g/mg dry weight) from wt mice fed a standard
diet (200 ppm iron), wt mice fed a high iron diet (standard chow supplemented with 2.5% carbonyl iron), th3/�, and th3/th3 mice were determined by atomic absorption and
are expressed as mean � SEM. (B) Average fold difference in the transcription levels of the Bmp/Smad pathway member Bmp6 and target gene Hamp1 were normalized
to LIC. Data were normalized to mouse Gapdh and are presented as the mean � SEM (n � 3). All averaged values are the product of duplicate determinations.
(C) Chemiluminesence signals from Western blots of liver lysates reacted with antibodies to phosphorylated Smad 1,5,8 and to �-actin were quantified and data
expressed as the mean � SEM of their ratios. (D) Phosphorylated Smad 1,5,8 levels normalized to �-actin are expressed relative to LIC. Data are presented as
mean � SEM. Statistical significance was determined using the Student t test. *P � .05, **P � .01, ***P � .001. Significance with respect to wt or iron-loaded wt values
are indicated by the brackets.
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relationship between iron status, Bmp/Smad signaling, and Hamp1
expression in mouse models of �-thalassemia intermedia (th3/�) and
major (th3/th3).5

Wild-type (wt) C57BL/6 mice were placed on a high iron
diet to match the elevated liver iron concentrations (LICs) observed
in th3/� mice (Figure 1A). The severity of iron overload in
th3/th3 was even higher, by 5-fold, relative to iron-loaded wt
mice (Figure 1A). Dietary iron loading of wt mice resulted in the
expected increase in Hamp1 and Bmp6 expression (measured by
quantitative RT-PCR). However, despite the similarly elevated
LICs in th3/� mice, neither Bmp6 nor Hamp1 expression was
significantly and proportionally increased. Moreover, the highly
iron loaded th3/th3 mice demonstrated a decrease in expression of
both Bmp6 and Hamp1. Thus, relative to hepatic iron load,
expression of these genes is significantly decreased in both
�-thalassemia models (Figure 1B). Furthermore, hepatic phosphor-
ylated Smad 1,5,8 protein concentration is significantly increased
only in liver samples from wt mice fed a high-iron diet relative to
controls (Figure 1C). When normalized to LIC, our data reveal
significantly decreased phosphorylated Smad 1,5,8 in th3/� and
th3/th3 samples compared with wt and wt fed a high-iron diet
(Figure 1D). These results present strong evidence of a blunted
relationship between LIC and Bmp6 mRNA expression in �-thalas-
semic mice.

No prior studies have examined Bmp6 expression or Smad
signaling in models of �-thalassemia. Suppressed Hamp1 transcrip-
tion relative to the degree of iron overload in �-thalassemic mice
has been postulated to occur as a consequence of expanded or
ineffective erythropoiesis and effects of certain erythroid factors
(eg, GDF15 or TWSG1) on hepatocellular hepcidin expression.6-8

Our results suggest that the effects of ineffective erythropoiesis on
Hamp1 expression include a suppression of Bmp6 mRNA expres-
sion relative to LIC, with consequent decreased Smad signaling. In
contrast, studies in mice examining the acute effects of erythro-
poietin administration on Bmp6 and Hamp1 demonstrated de-
creased Hamp1 expression but no effect on Bmp6 expression.9 This
observation supports the proposal that different erythroid signals
regulate hepcidin in normal and ineffective erythropoiesis.8 Whether
or not as a consequence of an erythroid factor, our findings
demonstrate that in �-thalassemic mice the normal relationship
between iron status and liver Bmp6 mRNA expression is blunted.
This dysregulation results in low Hamp1 levels relative to iron
stores and excess iron absorption relative to tissue demands.
Continued exploration of the mechanisms underlying blunted
Bmp/Smad signaling in �-thalassemia will enhance understanding
of the iron overload that is central to the pathophysiology of this
disease.
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