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Diffuse large B-cell lymphoma (DLBCL)
prognostication requires additional bio-
logic markers. miRNAs may constitute
markers for cancer diagnosis, outcome,
or therapy response. In the present study,
we analyzed the miRNA expression pro-
file in a retrospective multicenter series
of 258 DLBCL patients uniformly treated
with chemoimmunotherapy. Findings
were correlated with overall survival (OS)
and progression-free survival (PFS).
miRNA and gene-expression profiles were
studied using microarrays in an initial set

of 36 cases. A selection of miRNAs asso-
ciated with either DLBCL molecular sub-
types (GCB/ABC) or clinical outcome were
studied by multiplex RT-PCR in a test
group of 240 cases with available formalin-
fixed, paraffin-embedded (FFPE) diagnos-
tic samples. The samples were divided
into a training set (123 patients) and used
to derive miRNA-based and combined
(with IPI score) Cox regression models
in an independent validation series
(117 patients). Our model based on miRNA
expression predicts OS and PFS and im-

proves upon the predictions based on
clinical variables. Combined models with
IPI score identified a high-risk group of
patients with a 2-year OS and a PFS probabil-
ity of < 50%. In summary, a precise miRNA
signature is associated with poor clinical
outcome in chemoimmunotherapy-treated
DLBCL patients. This information improves
upon IPI-based predictions and identifies a
subgroup of candidate patients for alter-
native therapeutic regimens. (Blood. 2011;
118(4):1034-1040)

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common type
of non-Hodgkin lymphoma in adults, accounting for � 80% of
aggressive lymphomas.1 DLBCL is a heterogeneous group of
tumors with different genetic abnormalities, clinical features,
responses to treatment, and prognosis.2 This heterogeneity hinders
outcome prediction based on clinical and/or molecular parameters.

Combination therapy that associates CHOP (cyclophosph-
amide, doxorubicin, vincristine, and prednisone) with rituximab
(R-CHOP) has become a standard treatment for DLBCL, leading to
complete remission rates of 75%-80% and a 3- to 5-year PFS of
50%-60%.3-8 Nevertheless, patients who fail to respond to first-line
therapy or relapse continue to pose a challenge, and identification
at diagnosis of poor-outcome cases is crucial for deciding between
alternative treatment schemes.

The International Prognostic Index (IPI) has been the primary
clinical tool for predicting the outcome of patients with aggressive

non-Hodgkin lymphoma.9 Original IPI factors were redistributed in
patients treated with R-CHOP to give a revised score (R-IPI) that
distinguishes 3 prognostic categories, with 4-year survival rates
ranging from 94%-55% for poor-risk patients.7 Nevertheless, the
R-IPI does not discriminate patients with � 50% probability of
survival, which restricts its clinical value.7

The biologic heterogeneity of DLBCL has been shown substan-
tially to reflect the cell origin of these tumors from germinal center
or activated B cells. These differences are significant indepen-
dently of IPI stratification, showing that identifying4,8 cell or origin
signatures captures features other than IPI and can refine outcome
prediction.10 These differences between GC and ABC DLBCL
remain significant in patients treated with combined immunoche-
motherapy including rituximab.11 This classification system can
be accurately reproduced using immunohistochemistry against
GCET1, CD10, bcl6, MUM1, and FOXP1 in formalin-fixed,
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paraffin-embedded (FFPE) samples,12 thereby providing a simple
tool for evaluating the protein-expression profile of the tumor at the
time of diagnosis. However, although semiquantitative immunohis-
tochemistry for subclassifying DLBCL is feasible and reproduc-
ible, the concordance rates of the different markers vary.13 Differ-
ent methods of gene-expression profiling based on quantitative
RT-PCR have been developed as alternative or complementary
strategies for patient subclassification.14,15

Recently, miRNAs, small noncoding RNAs that fine-tune the
expression of multiple genes,16,17 have been shown to be excellent
biomarkers for cancer diagnosis and prognosis,18-21 including hemato-
logic malignancies.22-27 Furthermore, recent evidence demonstrates that
they may constitute markers of differentiation stage, malignant transfor-
mation, or sensitivity or resistance to specific drugs.22,28-31

The main goal of the present study was to search for an miRNA
signature associated with clinical outcome in DLBCL patients
treated with R-CHOP using FFPE tissue samples. We also investi-
gated whether miRNA expression profiling can identify particular
miRNA species that are differentially expressed between DLBCL
subtypes according to the cell of origin (COO) classification.10,32

Methods

The experimental procedures are summarized in Figure 1.

Patients and treatments

The study population consisted of a retrospective series of 258 de novo
cases of DLBCL obtained from various centers in Spain, 1 in Italy, and 3 in
the United States. The study was reviewed and approved as being of
minimal/no risk or as exempt by each of the participating institutional
review boards, and the overall collaborative study was approved by the
institutional review board at the Spanish National Cancer Research Center
(CNIO) in Madrid, Spain. The study protocol and sampling methods were
approved by the Instituto de Salud Carlos III institutional review board in
de-identified anonymous format. Cases associated with HIV or HCV
infections or previous immunosuppressive treatments were excluded. All
histologic samples corresponded to initial diagnostic biopsies before
treatment. Histologic criteria used for diagnosis and classification were
those of the World Health Organization.1 All cases positively stained for
CD20. Cases diagnosed as T-cell histiocyte-rich B-cell lymphoma, primary

mediastinal B-cell lymphoma cases, cutaneous LBCL, intravascular LBCL,
and those histologically associated with a follicular lymphoma component
were excluded.

All patients were treated as part of their routine care with standard
treatment protocols using a combination of anthracycline-based regimens
(6-8 cycles in most cases) and immunotherapy including rituximab; the
majority were treated with R-CHOP (n � 243). Other regimens included
R-EPOCH and R-MegaCHOP. Responses to treatment were determined by
a computed tomography scan in most cases (as recorded in the clinical
recovery data sheet) and following the response criteria for lymphoma as
defined by Cheson et al.33

Array-based expression analysis and in silico prediction of the
miRNA regulatory network

miRNA and gene-expression hybridization were carried out using Agilent
Technologies microarrays. RNA and DNA extraction methods, details of
microarrays and hybridization procedures, and miRNA and gene-
expression profiling array normalization are described in supplemental
Methods (available on the Blood Web site; see the Supplemental Materials
link at the top of the online article).

The differential miRNA expression profile between DLBCL subtypes
according to the COO signature was studied after GEP-based classification
of the cases32 (for details, see supplemental Methods).

miRNA expression data for all 36 DLBCL cases from the discovery set
of patients were examined in a univariate (gene-by-gene) Cox model using
SignS.34 miRNA and gene-expression data have been deposited in the Gene
Expression Omnibus35 and are accessible through GEO series accession number
GSE21849 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE21849).

Targets were predicted using available databases (miRBase Version
11.0, MICROCOSM, and TargetScan release 5.1) and a Pearson correlation
test based on gene-expression and miRNA-expression data from cases in
the discovery set (details and additional references are provided in
supplemental Methods).

Real-time PCR for relative miRNA quantification using RNA
from FFPE tissue

miRNA expression in FFPE tissues was analyzed using the Applied
Biosystems 384-well multiplexed real-time PCR assay with 250 ng of total
RNA. Details of the methods, including the selection of endogenous
miRNAs, are described in supplemental Methods.

Figure 1. Flowchart with experimental design. The
whole series of patients was divided into 2 major groups:
a discovery group (36 patients with available frozen
tissue for profiling using array technologies) and a test
group (240 patients with available FFPE tissue from the
diagnostic pathologic sample). The test group was fur-
ther divided systematically into 2 sets of patients: the
training group (123 patients) and the validation group
(117 patients). The clinical characteristics according to
sex, age, stage, extranodal disease, serum lactate dehy-
drogenase levels, electrocorticogram, and IPI score of
the different sets of patients are summarized in Table 1.
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Immunohistochemistry and tissue microarray construction

All cases of DLBCL with available FFPE tissue were histologically reviewed.
Representative areas were selected to construct tissue microarrays. Immunohisto-
chemical staining was performed after standard automated protocols using
antibodies against CD10, bcl6, MUM-1/IRF4, GCET1, and FOXP1. Immunohis-
tochemical markers were scored on the basis of the cutoffs used by Choi et al12

(see details in supplemental Methods).

Statistics

The statistical analyses are fully described in supplemental Methods. In
brief, outcome-related indices (overall survival [OS] and PFS) were
calculated as defined by Cheson et al.33 Survival distributions were
estimated using the Kaplan-Meier method36 and compared with the
log-rank test.37 The percentage of patients alive at the median follow-up
time (and 95% confidence intervals) were noted. The �2 test was used to
assess differences in the proportions of individual prognostic factors
between series.

Cox regression analysis38 was used to derive 3 independent survival
models based on IPI score, miRNA expression (of 9 selected miRNAs),
and GC-ABC classification based on immunohistochemistry12 for both
OS and PFS in the training set. More complex models composed of
combinations of the 3 individual predictor models were examined. We
assessed the improved model fit using �2 values to check for significant
changes in log likelihood.

Only the combination of miRNAs and IPI score gave a significantly
better fit than the individual models for both OS and PFS (P � .05 in all
comparisons), which justified our fitting a large model with these variables.
In this model, significant variables were determined by backward stepwise
selection using AUC as the criterion. In this way, we derived definitive
combined models for both OS and PFS. These were then validated in the
test series using the (integrated) area under the ROC curve, the concordance
index, and the Brier score (for details, see supplemental Methods).

Both miRNA-based and combined survival models (functions) based on
IPI score and miRNAs after variable selection were applied to the entire test
group of patients. For details, see survival functions hi(t)(OS) and hi(t)(PFS)
in supplemental Methods.

Models were constructed and validated using the R statistical program,
specifically with the packages survival (T. Therneau), pec (T. Gerds), and
survcomp (B. Haibe-Kains, C. Sotiriou, and G. Bontempi). Additional
analyses were conducted with SPSS Version 15.0.0.

Results

Clinical characteristics of the series

A summary of the clinical characteristics of the entire set of
patients used in this study can be found in Table 1. Complete
clinical and histopathologic data were available for all 258 patients.
The median follow-up time for all patients was 21.3 months. The
median follow-up time among patients alive at last follow-up was
27 months (range, 2-105 months). The estimated 2-year OS was
74.7% � 3% and the estimated PFS was 67.5% � 3% (supplemen-
tal Figure 1). Because the number of events at the median
follow-up time comprised 75% (44 of 58) and 92% (66 of 77) of the
total number of events during follow-up for OS and PFS, respec-
tively, we considered that the series was suitable for further
statistical analysis despite the limited follow-up.

No significant differences were found between the IPI variables
in the training and validation groups of patients in the test set
(240 patients), with the exception of age. All clinical components
of IPI were predictive for OS in the univariate analysis and all but
age for PFS (relative risks and confidence intervals for each
variable are shown in Table 1, and survival estimates according to
IPI in supplemental Figure 1).

Confirmation of the prognostic capacity of COO classification
based on immunohistochemistry

Immunohistochemistry was performed in all 240 cases with
available FFPE tissue. Most cases (232 of 240) could be classified

Table 1. Clinical features of the series

Test set (n � 240 patients)

Screening set Training P Validation
Relative risk of death,

OS (95%CI)
Relative risk of progression,

PFS (95% CI)

Number of patients 36 123 117

IPI factors

Age, y .004 2.406 (1.298-4.462); P � .005 1.238 (0.758-2.021); P � .394

� 60 13 61 35

� 60 23 62 79

Stage .5 2.221 (1.213-4.067); P � .01 3.287 (1.823-5.927); P � .000

I-II 8 55 43

III-IV 28 68 65

Lactate dehydrogenase .112 3.13 (1.53-6.43); P � .001 3.051 (1.66-5.608); P � .000

low 10 56 28

high 26 67 55

Performance status .87 2.265 (1.306-3.929); P � .004 1.956 (1.182-3.238); P � .009

Ambulatory (0-1) 29 90 56

Not ambulatory (2-4) 7 33 22

Extranodal site involvement .49 2.012 (1.135-3.565); P � .017 2.197 (1.315-3.670); P � .003

� 1 site 28 96 57

� 1 site 8 27 21

IPI score (number of IPI factors) .067 1.690 (1.378-2.073); P � .000 1.479 (1.244-1.758); P � .000

Low risk (0,1) 6 46 33

Low to intermediate risk (2) 10 24 25

Intermediate to high risk (3) 12 29 26

High risk (4,5) 8 22 28

Distribution of IPI factors in the whole series is shown. The �2 test was used to assess differences in the proportions of individual prognostic factors between the training
and validation sets of patients. Relative risk of event (OS and PFS) estimated from univariate Cox regression is shown for each IPI factor in the test set of patients.
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into GC or ABC subtypes according to previously published
algorithms.12 There were 106 cases classified as the GC type (46%)
and 126 as the ABC type (54%). The estimated 2-year OS for
ABC-type DLBCL cases was 69.8% � 4.5%, significantly worse
than for GC-type DLCBL patients (81.4% � 4.3%; P � .05).
Differences were also found for PFS (60.7% � 4.7% for the ABC
type compared with 75.6% � 4.6% for the GC type, P � .05;
supplemental Figure 1).

Identification of a COO miRNA signature.

After gene expression–based classification using the gene set classifier
of Wright et al,32 11 cases were classified as the GC type and 18 cases as
the ABC type. Eight miRNAs were found to be differentially expressed
between these subtypes (FDR � 0.03; see supplemental Table 2). These
included miR-331, miR-151, miR-28, and miR-454-3p, which were
up-regulated in the GC-type DLBCL, whereas miR-222, miR-144,
miR-451, and miR-221 were up-regulated in the ABC-type DLBCL.
We searched for the putative gene targets of the 8 miRNAs that were
differentially expressed among the subtypes. Selected target pairs were
miR151-5p and miR28-5p targeting FOXP1, miR144 targeting LRMP1,
and miR451 targeting MME (CD10; see supplemental Table 2).
Moreover, Gene Set Enrichment Analysis (GSEA Version 239) demon-
strated that the GC–B-cell pathway was the main target set of genes that
could be modulated by this set of miRNAs (see supplemental Table 2).

Identification of a set of candidate miRNAs associated with
outcome in DLBCL

To search for miRNAs related to outcome but not associated with
the previously described COO signatures, miRNA expression data
for all 36 DLBCL cases from the discovery set of patients were
subjected to a univariate (gene-by-gene) Cox analysis after FCMS
using SignS.34 Fifty-seven human miRNAs were correlated posi-
tively or negatively with OS (P � .05; see supplemental materials).
None of these 57 miRNAs formed part of the COO signature,
suggesting that this method may add some complementary informa-
tion to the previous approach.

After the previously described procedures, a final set of 9 miRNAs
was subjected to relative RT-PCR quantification in the entire test group
of 240 patients for whom FFPE tissue was available (see details in
supplemental Methods). Seven of these miRNAs (miR-221, miR-222,
miR-331, miR-451, miR-28, miR-151, and miR-148a) were identified
using the COO-signature approach and 2 additional miRNAs (miR-93
and miR-491) were obtained from the univariate (gene-by-gene) Cox
analysis using SignS.34

Generation of a miRNA-based predictor model using FFPE
tissue samples

After Cox regression analysis,38 3 independent survival models
based on IPI score, miRNA expression (of 9 selected miRNAs),
and GC-ABC classification based on immunohistochemistry12

were derived for OS and PFS in the training set.
miRNA expression-based models using the expression of

9 miRNAs as a continuous variable were able to predict both OS
and PFS. Their predictive performance in the validation group of
patients was confirmed by 3 different statistical methods including
the (integrated) area under the ROC curve, the concordance index,
and the Brier score (for details, see supplemental Methods). When
evaluating the Brier score, we used a conditional weighting scheme
from a Cox model of the censoring distribution,40 including all
miRNAs and the IPI score as predictors. The results for all tests are
shown in supplemental Tables 2 and 3 and in supplemental
Figure 2.

After confirming the predictive performance in the validation set of
patients, we plotted Kaplan-Meier curves using the whole test group
(training and validation sets) of patients. After median stratification of
the continuous score obtained from the miRNA-based models, all
patients from the test group were classified as having either a low
miRNA score (below median) or a high miRNA score (above median).
Significant differences in OS and PFS were found between the 2 groups
of patients (log-rank test, P � .001 for both; Figure 2).

Only the combination of miRNAs and IPI score was signifi-
cantly better than the individual models for both OS and PFS
(�2 test for the change in log likelihood, P � .05 for all compari-
sons), justifying our fitting a large model with these variables. The
model was derived by backward stepwise selection using area
under the curve as the criterion. This yielded combined models for
both OS and PFS (details of survival functions can be found in the
supplemental Methods). Because the construction of the combined
models involves a multivariate analysis (variable selection step),
the prediction based on the expression of the miRNAs present in
the combined models was independent of the IPI score (the
miRNAs included in these combined models together with IPI
score and its associated hazard ratios are shown in Figure 3).

Kaplan-Meier estimates for OS and PFS in all test group
series using the combined models were calculated and plotted
according to the distribution of terciles (Figure 4). A high-risk
subgroup of patients with OS and PFS below 50% after a 2-year
follow-up was identified.

Figure 2. Kaplan-Meier representation of the miRNA-based survival model. miRNA-based survival scores were calculated for each patient in the test group according to the survival
function obtained in the training set of patients.After median stratification, Kaplan-Meier estimates were plotted for OS and PFS (log-rank test, P � .001 for both OS and PFS).

miRNAAS PROGNOSTIC MARKERS IN DLBCL 1037BLOOD, 28 JULY 2011 � VOLUME 118, NUMBER 4

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/118/4/1034/1351121/zh803011001034.pdf by guest on 21 M

ay 2024



The miRNA-regulatory network

To gain a deeper insight into the network of genes that might be
regulated by the set of outcome predictor miRNAs, we interrogated
the current versions of the MiRBase and TargetScan miRNA target
prediction databases. The predicted pairs we found included
miR-222–CDKN1A (p21), miR-93–BCL66, miR-93–MCL1, and
miR-93–MAP3K14 (NIK), among others.

We also examined the correlation between gene expression and
miRNA expression in the data from the 29 samples of the discovery
set. Because down-regulation of the target mRNA41,42 is considered
the main mechanism by which miRNAs modulate protein expres-
sion, significant negative correlation pairs were identified, includ-
ing miR-331–CARD10, miR-331–IRF4, miR-331–PIM2, and miR-
331–AID. The complete correlation grid obtained is shown in
supplemental Table 2. Interestingly, the absence of any significant
negative correlation between many in silico–predicted pairs of
miRNAs and mRNAs in this test suggests that additional mecha-
nisms to mRNA down-regulation, such as translation inhibition, may
explain the protein-expression modulation afforded by miRNAs.41,43,44

Discussion

miRNAs are emergent biomarkers of disease that have proved
useful for cancer diagnosis and prognosis18-21 and in hematologic

malignancies.22-27 They have been demonstrated to reflect accu-
rately the differentiation stage of human lymphoid B cells,22,27,28

providing valuable information for tumor classification19,28 and
prognostication26,27 that may be added to that available from
gene-expression and clinical data.

In the present study, we analyzed miRNA expression profiles in
a series of homogeneously treated DLBCL patients, deriving
miRNA-based models that correlate with OS and PFS, but which
are independent of IPI. We used a 2-step approach to identify a
candidate set of miRNAs and then validated this with multiplex
RT-PCR using RNA from FFPE tissue in 2 independent sets of
patients. This method (real-time PCR) has been found to give
reliable measures of gene and miRNA expression14,15 that are
alternatives to the classic semiquantitative immunohistochemical
approaches.13 Furthermore, the technique can be routinely applied
to FFPE samples, because the small size of miRNAs makes them
relatively resistant to RNAse degradation and because they can be
successfully isolated from routinely processed FFPE tissue.26

After the first step of candidate identification, we found a
signature of miRNAs related to the differentiation stage as defined
by the COO signature.32 Specifically, we found miR-331, miR-151,
miR-28, and miR-454-3p to be up-regulated in the GC-type
DLBCL. Conversely, miR-222, miR-144, miR-451, and miR-221
were up-regulated in the ABC-type DLBCL. Our data from patient
tissue samples classified according to their gene-expression profile

Figure 3. Hazard ratio charts. The interquartile range of the hazard ratios estimated from the models after variable selection is shown for each continuous variable. For each
miRNA, we calculated the log of the hazard ratio, where the difference in that variable was that of the interquartile range (ie, the third to the first quartiles). For example, for
miR-222, the first and the third quartiles are 1.515 and 3.945; the bar shows the hazard ratio. For PFS: exp(0.315 * [3.945-1.515] � 2.15) and a 75% and 95% interval. For
IPISCORE, a discrete variable, we show the log hazard ratio comparing each of the values of IPISCORE (except 0) with IPISCORE � 0 as a reference.

Figure 4. Kaplan-Meier representation of combined survival model based on IPI score and miRNAs. Survival scores according to IPI and miRNAs were calculated for
each patient in the test group according to the combined survival function obtained in the training set of patients (see “Generation of a miRNA-based predictor model using
FFPE tissue samples”). After tercile stratification, Kaplan-Meier estimates were plotted for OS and PFS (log-rank test, P � .001 for both OS and PFS). Hazard ratios estimated
from the models are shown in Figure 3.
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(using the COO classifier) confirm those from other studies, which
found miR-222 and miR221 to be up-regulated in the well-known
ABC-DLCL cell lines OCI-Ly-10 and OCI-Ly-3.26,27,29,45 Further-
more, our in silico prediction indicates that genes essential as
markers of the COO subtype (mainly GCB genes) are putative
targets of certain differentially expressed miRNAs.

When we compared the classification of patients according to the
miRNA model and the immunochemically based GC-ABC classifica-
tion, the systems were shown to be nonoverlapping and complementary,
thereby establishing different subsets of cases (P � .001, supplemental
Table 4 sheet D). These results are particularly interesting because there
is not complete agreement about the best method for stratifying patients
with DLBCL. Different immunohistochemical algorithms are currently
being tested with various results among series of patients, including the
one presented here.46,47

Our results also identify a set of miRNAs in which expression is
associated with poor clinical outcome in R-CHOP–treated DLBCL
patients. miRNA expression–based models using the expression of
miRNAs as a continuous variable were able to predict both OS and
PFS in 2 independent sets of patients. These models predict OS and
PFS and improve IPI-based predictions, which allowed us to
generate combined models identifying a high-risk subgroup of
patients with OS and PFS below 50% after a 2-year follow-up.

This particular signature, which contains some miRNAs previ-
ously shown to be correlated with the outcome of DLBCL
patients27,29 and other hematologic malignancies,23 includes
miRNAs that target pathways commonly deregulated in DLBCL.
These include, for example, genes related to apoptosis (MCL1), the
cell cycle (CDKN1A), MAPK and NFkB signaling (MAP3K14,
MUM1/IRF4, CARD10, and PIM2), somatic mutation during the
GC reaction (AID), and key transcription factors such as BCL6.
Specifically, miR-221 and miR-222 have been found to be essential
growth-regulatory mediators inhibiting p27 (Kip1), a cell-cycle
inhibitor and tumor suppressor.48-51 Other components of the
signature, such as the miR-106b-25 cluster (including miR-93),
have recently been found to interfere with the expression of
CDKN1A (p21) and BCL2L11, thereby impairing the TGFB
tumor-suppressor pathway in other cancers.52 Functional experi-
ments will be required to confirm the candidate interactions
identified here. Transfection experiments (introducing the miRNA
and measuring changes in the target mRNA/protein) and silencing
experiments (using shRNAs to inhibit the constitutive expression
of the miRNAs) might both be performed to address this matter, but
this was beyond the scope of the present study.

It is remarkable that the miRNA signature identified here
predicted survival independently of the COO classification. Al-
though the GC-ABC subclassification has a potentially predictive
role in the identification of patients likely to respond to specific
therapies for ABC-type DLBCL,53 the development of new meth-
ods that can capture a set of DLBCL cases with particularly
aggressive behavior paves the way for the design of trials using
alternative therapeutic strategies (eg, untargeted therapies such as

stem cell transplantation or more refined targeted therapies against
the substrate genes/pathways involved).

The recent observation that c-MYC rearrangements in DLBCL are
associated with poor prognosis in a subset (5%-15%) of rituximab-
treated patients54,55 led us to consider the possible relationship between
MYC status and the miRNA expression classifier. The biologic basis for
such an association might reside in the role of MYC as a transcriptional
regulator of the expression of some miRNAs.56-58 None of the miRNAs
included in the prognostic signatures described here has been found to
be associated with MYC in a wide range of functional studies in
lymphoid cell lines and lymphoma animal models.56-58 However,
because of the possible combinatorial effect of both MYC rearrange-
ments and miRNA deregulation, additional studies on the combination
of MYC and miRNA predictive impact are warranted. Our data
identified a set of miRNAs that could be useful outcome prognostic
markers in DLBCL treated with R-CHOP, and an integrated model with
IPI identified a subset of high-risk patients with a 2-year OS � 50%.
Therefore, our approach may serve to refine outcome prediction and to
assign a risk-stratified therapy for DLBCL patients.
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