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The genetic lesions identified in chronic
lymphocytic leukemia (CLL) do not en-
tirely recapitulate the disease pathogene-
sis and the development of serious com-
plications, such as chemorefractoriness.
While investigating the coding genome of
fludarabine-refractory CLL, we observed
that mutations of SF3B1, encoding a splic-
ing factor and representing a critical com-
ponent of the cell spliceosome, were re-

current in 10 of 59 (17%) fludarabine-
refractory cases, with a frequency
significantly greater than that observed in
a consecutive CLL cohort sampled at
diagnosis (17/301, 5%; P � .002). Muta-
tions were somatically acquired, were
generally represented by missense nucle-
otide changes, clustered in selected HEAT
repeats of the SF3B1 protein, recurrently
targeted 3 hotspots (codons 662, 666, and

700), and were predictive of a poor prog-
nosis. In fludarabine-refractory CLL,
SF3B1 mutations and TP53 disruption
distributed in a mutually exclusive fash-
ion (P � .046). The identification of SF3B1
mutations points to splicing regulation as
a novel pathogenetic mechanism of poten-
tial clinical relevance in CLL. (Blood. 2011;
118(26):6904-6908)

Introduction

The clinical course of chronic lymphocytic leukemia (CLL) ranges
from a very indolent disorder with a normal lifespan for the patient
to a rapidly progressive disease that leads to death. Occasionally,
CLL undergoes a transformation to Richter syndrome (RS).1-3 The
variable clinical course of CLL is driven, at least in part, by the
disease’s immunogenetic and molecular heterogeneity.4

Despite recent advances, the genetic lesions identified to date do
not fully recapitulate the molecular pathogenesis of CLL and do not
entirely explain the development of severe complications, such as
chemorefractoriness, which still represent unmet clinical needs.5 In
approximately 40% of cases, refractoriness to fludarabine is
attributable to the disruption of TP53, but in a sizeable fraction of
patients, the molecular basis of this aggressive phenotype remains
unclear.6

Recently, 2 independent studies of the CLL coding genome
investigated at disease presentation have revealed a restricted
number of mutated genes, including NOTCH1.7,8 These studies
have provided a proof of concept that, similar to other malignan-
cies, genome-wide mutational analysis might identify novel lesions

of biologic and clinical relevance in CLL. On these grounds, we
have embarked on the investigation of the coding genome of
fludarabine-refractory CLL to identify genetic lesions associated
with chemorefractoriness. The initial phases of this analysis have
revealed recurrent mutations of SF3B1, a critical component of the
cell spliceosome, pointing to the potential involvement of splicing
regulation in CLL pathogenesis and chemorefractoriness.

Methods

Patients

The study population comprised 3 cohorts representative of different
disease phases: (1) fludarabine-refractory CLL (n � 59), including cases
(n � 11) subjected to whole-exome sequencing (supplemental Table 1,
available on the Blood Web site; see the Supplemental Materials link at the
top of the online article); (2) a consecutive series of newly diagnosed and
previously untreated patients with CLL (n � 301; supplemental Table 2);
and (3) clonally related RS (n � 33; all diffuse large B-cell lymphomas;
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supplemental Table 3). Diagnosis of CLL and of fludarabine-refractoriness
were based on International Workshop on CLL–National Cancer Institute
(IWCLL-NCI) criteria2; RS was based on histologic criteria.1,9

Peripheral blood tumor samples were obtained as follows: (1) for
patients with fludarabine-refractory CLL, immediately before starting
treatment to which the patient did not respond because of stable/progressive
disease; and (2) for newly diagnosed and previously untreated CLL, at
disease presentation. All studies on RS were performed on RS diagnostic
biopsies. Germline DNA samples from the same patients were obtained
from saliva or from purified granulocytes and confirmed to be tumor-free by
PCR of tumor-specific IGHV-D-J rearrangements. Patients provided in-
formed consent in accordance with local institutional review board
requirements and the Declaration of Helsinki. The study was approved by
the ethical committee of the Ospedale Maggiore della Carità di Novara
associated with the Amedeo Avogadro University of Eastern Piedmont
(protocol code 59/CE; study number CE 8/11).

Mutation analysis of SF3B1

Mutation analysis of SF3B1 (exons 1-25, including splice sites; RefSeq
NM_012433.2) was performed on PCR amplimers obtained from genomic
DNA by a combination of Sanger sequencing (ABI PRISM 3100 Genetic
Analyzer; Applied Biosystems) and targeted next generation sequencing
(Genome Sequencer Junior, 454 Life Sciences; Roche; mean coverage
approximately 200�). Additional details of sequencing strategies are in
supplemental Methods.

FISH karyotype; mutation analysis of IGHV, TP53, and
NOTCH1; copy number analysis; and gene expression profile
analysis

FISH analysis was performed with the use of probes LSI13 and LSID13S319,
CEP12, LSIp53, and LSIATM (Abbott).3 IGHV sequences were aligned to
ImMunoGeneTics directory and considered mutated if their identity to
corresponding germline genes was � 98%.3 TP53 and NOTCH1 mutations
were analyzed by Sanger sequencing.3,7 Genome-wide DNA profiles were
obtained with the Affymetrix Genome-Wide Human SNP Array 6.0. Gene
expression profile analysis was performed with the use of Affymetrix
HG-U133Plus2 arrays. Further details are reported in supplemental Methods.

Statistical analysis

Overall survival was measured from date of diagnosis to date of death
(event) or last follow-up (censoring). Treatment-free survival was measured
from date of diagnosis to date of progression to symptomatic disease requiring
treatment according to IWCLL-NCI guidelines (event),2 death, or last follow-up
(censoring). Further details are reported in supplemental Methods.

Results and discussion

After the initial observation of recurrent SF3B1 mutations in 3 of
11 fludarabine-refractory CLL analyzed by whole-exome sequenc-
ing, we performed targeted resequencing of the SF3B1 coding
sequence and splice sites in 48 additional cases of progressive and
fludarabine-refractory CLL (total number of cases analyzed: 59;
supplemental Table 1). SF3B1 was altered in 10 of 59 (17%)
fludarabine-refractory CLL by missense mutations (n � 9) or
in-frame deletions (n � 1) clustering in the HEAT3, HEAT4, and
HEAT5 repeats of the SF3B1 protein (Figures 1 and 2A; supplemen-
tal Table 4). Two sites that are highly conserved interspecies (codon
662 and codon 700) were recurrently mutated in 3 and 5 cases,
respectively (Figure 1). SF3B1 mutations were monoallelic and
were predicted to be functionally significant according to the
PolyPhen-2 algorithm (supplemental Table 4).10 These data docu-
ment that mutations of SF3B1, a splicing factor that is a critical
component of the spliceosome, recurrently associate with fludara-
bine-refractory CLL.

The biologic characteristics of fludarabine-refractory CLL
harboring SF3B1 mutations are summarized in supplemental Table
1. Mutations occurred irrespective of the IGHV mutation status,
CD38 expression, and ZAP70 expression. At the time of fludarabine-
refractoriness, SF3B1 mutations were enriched in cases harboring a
normal FISH karyotype (P � .008; supplemental Table 1). In
addition, SF3B1 mutations distributed in a mutually exclusive
fashion compared with TP53 disruption tested by deletion and/or
mutation (mutual information I � 0.0609; P � .046; Figure 2B).
By combining SF3B1 mutations with other genetic lesions enriched
in chemorefractory cases (TP53 disruption, NOTCH1 mutations,
ATM deletion),7,11-13 fludarabine-refractory CLL appeared to be
characterized by multiple molecular alterations that, to some
extent, are mutually exclusive (Figure 2B).

To investigate whether SF3B1 mutations are restricted to
chemorefractory cases, we then compared the prevalence of
mutations observed at the time of fludarabine-refractoriness to the
prevalence of mutations observed in other disease phases. In a
consecutive series evaluated at CLL diagnosis, SF3B1 mutations
were rare (17/301; 5%; Figure 2A; supplemental Table 4) and
occurred irrespective of other molecular and immunogenetic
features (supplemental Table 2; supplemental Table 5; supplemen-
tal Figure 1). Remarkably, 5 of 17 (29%) CLL mutated at diagnosis
were primary fludarabine-refractory patients. In these 5 cases,
TP53 disruption and NOTCH1 mutations occurred in 1 case each.
None of the 12 remaining cases harbored TP53 disruption or
NOTCH1 mutations. By univariate analysis, SF3B1 mutations
showed a crude association with short treatment-free survival
(P � .001) and overall survival (P � .011; Figure 2C). By multivar-
iate analysis, the increased risk of death predicted by SF3B1
mutations was independent (hazard ratio 3.02; 95% confidence
interval 1.24-7.35; P � .015) of confounding clinical and biologic
variables (supplemental Table 6). Confirmation within the frame of
prospective clinical trials will be helpful to fully assess the
generalization of SF3B1 mutations as a CLL prognostic marker.

In CLL investigated at diagnosis, the hotspot distribution and
molecular spectrum of SF3B1 mutations, as well as their mutual
relationship with other genetic lesions, were similar to those
observed in fludarabine-refractory CLL (Figures 1 and 2B; supple-
mental Table 4). SF3B1 mutations were only found in 2 of 33 (6%)
clonally related RS (Figures 1 and 2A; supplemental Table 4).
Across the different disease phases investigated, mutations were
confirmed to be somatically acquired in all cases (n � 18) for
which germline DNA was available (supplemental Table 4).
Among the 3 SF3B1 mutated cases for which serial samples were
analyzed, SF3B1 mutations were acquired in 2 cases. One fludara-
bine-refractory CLL (case 7915 in supplemental Table 4) acquired
the c.2044A � G p.K666E mutation at the time of refractoriness,
and one RS (case 7509 in supplemental Table 4) acquired the
c.2146A � G p.K700E mutation at the time of transformation. In
the remaining case (case 8343 in supplemental Table 4), the SF3B1
mutation was present in all disease phases.

Although the relative expression of SF3B1 in CLL was greater
compared with normal B-cell subsets (Figure 2D), extensive
investigation by single-nucleotide polymorphism array analysis
ruled out focal copy number abnormalities of SF3B1 in this leukemia
(n � 0/323). SF3B1 mutations were consistently absent among mature
B-cell neoplasms (n � 136) other than CLL (supplemental Table 7).
These data document that SF3B1 mutations: (1) are specific for CLL
among mature B-cell neoplasms; (2) occur at a low rate at CLL
presentation, whereas they are enriched in fludarabine-refractory cases;
and (3) play a minor role in RS transformation, corroborating the notion
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that CLL histologic shift is molecularly distinct from chemorefractory
progression without RS transformation.3

Our identification of SF3B1 mutations in CLL, and the recent
discovery of SF3B1 mutations in myelodysplasia, points to the involve-
ment of splicing regulation as a novel pathogenetic mechanism in
hematologic malignancies.14,15 SF3B1 is a critical component of both
major (U2-like) and minor (U12-like) spliceosomes,16-18 which enact
the precise excision of introns from pre-mRNA.19-21 The precise
biologic role of SF3B1 mutations in CLL is currently elusive and will
require dedicated studies. The pathogenicity of SF3B1 mutations in
CLL is strongly supported by the clustering of these mutations in
evolutionarily conserved hotspots localized within HEAT domains,
which are tandemly arranged curlicue-like structures serving as flexible
scaffolding on which other components can assemble.22,23 In addition,
the observation that SF3B1 regulates the alternative splicing program of
genes controlling cell-cycle progression and apoptosis points to a
potential contribution of SF3B1 mutations in modulating tumor cell
proliferation and survival.20,24,25 In addition to pathogenetic implica-
tions, SF3B1 mutations might also provide a therapeutic target for
SF3B1 inhibitors,24,25 which are currently under preclinical develop-
ment as anticancer drugs.
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Figure 1. SF3B1 mutations in CLL and RS. Schematic diagram of the human SF3B1 gene (top) and protein (bottom) with its functional domains (PPP1R8 binding domain
and HEAT repeats), and multiple alignment of the HEAT3, HEAT4, and HEAT5 amino acid sequences of the human SF3B1 protein with orthologous SF3B1 proteins (n � 15).
Amino acids conserved among species are highlighted. Color-coded shapes indicate the position of the mutations found in CLL at diagnosis, in fludarabine-refractory CLL, and in RS.
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