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The iron hormone hepcidin is inhibited by
matriptase-2 (MT2), a liver serine protease
encoded by the TMPRSS6 gene. Cleaving
the bone morphogenetic protein (BMP) co-
receptor hemojuvelin (HJV), MT2 impairs
the BMP/son of mothers against decapen-
taplegic homologs (SMAD) signaling path-
way, down-regulates hepcidin, and facili-
tates iron absorption. TMPRSS6 inactivation
causes iron-deficiency anemia refractory to
iron administration both in humans and

mice. Genome-wide association studies
have shown that the SNP rs855791, which
causes the MT2 V736A amino acid substi-
tution, is associated with variations of
serum iron, transferrin saturation, hemo-
globin, and erythrocyte traits. In the present
study, we show that, in vitro, MT2 736A

inhibits hepcidin more efficiently than 736V.
Moreover, in a genotyped population, after
exclusion of samples with iron deficiency
and inflammation, hepcidin, hepcidin/trans-

ferrin saturation, and hepcidin/ferritin ratios
were significantly lower and iron parame-
ters were consistently higher in homozy-
gotes 736A than in 736V. Our results indicate
that rs855791 is a TMPRSS6 functional vari-
ant and strengthen the idea that even a
partial inability to modulate hepcidin influ-
ences iron parameters and, indirectly, eryth-
ropoiesis. (Blood. 2011;118(16):4459-4462)

Introduction

Hepcidin is the key regulator of iron homeostasis, controlling
surface expression of the iron exporter ferroportin on enterocytes
and macrophages.1 Inactivation of hepcidin causes severe iron
overload in mice and humans, whereas hepcidin overexpression
causes iron-deficiency anemia.2 Hepcidin expression is up-
regulated in response to increased body iron, through the bone
morphogenetic protein (BMP)–hemojuvelin (HJV)–son of mothers
against decapentaplegic homologs (SMAD) pathway3 and inhib-
ited by matriptase-2 (MT2), a type II transmembrane serine
protease encoded by the TMPRSS6 gene4,5 that in vitro cleaves the
BMP coreceptor HJV.6 In vivo, “Mask” mice, which have a deleted
serine protease domain,4 and Tmprss6-null mice7 show microcytic
anemia because of high hepcidin levels. TMPRSS6 deleterious
mutations in humans cause iron-refractory iron-deficiency anemia
that is unresponsive to oral iron administration.5 The same muta-
tions show partial inhibition of the hepcidin promoter activity when
overexpressed with HJV in vitro in hepatoma cells.6,8

Recent genome-wide association studies reported the associa-
tion of common genetic variants of TMPRSS6 (rs855791 and
rs4820268) with serum iron and transferrin saturation,9-11 hemoglo-
bin, mean corpuscular volume, and mean corpuscular hemoglo-
bin,12,13 highlighting a role for MT2 in the control of iron and
erythrocyte parameters. The SNP rs855791 (2321G- � A) causes a
nonsynonymous alanine to valine change (A736V) in the catalytic
domain, whereas the SNP rs4820268 leads to a synonymous
change at 521 and is in linkage disequilibrium with rs855791.
Because rs855791 affects the MT2 catalytic domain, a common
speculation was that its effects were hepcidin mediated.9,14 We

tested this hypothesis using an in vitro assay based on the luciferase
reporter gene driven by the hepcidin promoter, and showed that the
MT2736A inhibits hepcidin more efficiently than MT2736V. We also
demonstrated that this variant affects the hepcidin levels of normal
individuals.

Methods

In vitro studies

The in vitro analyses (Western blot, hepcidin promoter activity assay, and
hepcidin-binding assay) were reported previously6 and are detailed in
supplemental Methods (available on the Blood Web site; see the Supplemen-
tal Materials link at the top of the online article). The TMPRSS6 variant
encoding 736A (MT2736A) was obtained by mutagenesis of the MT2736V

plasmid using the QuikChange site-directed mutagenesis kit (Stratagene).

Human studies

The population of the genetic isolate “Val Borbera” (VB) was described
previously.15 The study was approved by the San Raffaele ethical commit-
tee. Serum hepcidin levels were measured by SELDI-TOF-MS16 and
detailed results are available elsewhere.11

Statistical analysis

Association of TMPRSS6 rs855791 was first analyzed in 655 unrelated
(pairwise kinship coefficient � 0.0625) individuals selected using the
Greffa software program developed by Falchi et al.17 We included in the
final analysis only individuals with hepcidin levels above the lower limit of
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detection (0.55nM) and subjects with ferritin � 30 ng/mL and C-reactive
protein � 1mg/dL (subset 1). Mean values were adjusted for sex, age,
squared age, and interaction between them (sex*age, sex*squared age)
using ANOVA (95% confidence interval) and SPSS 17.0 software and in
house R-2.8.1 scripts (The R Project for Statistical Computing at
http://www.r-project.org).

Results and discussion

In vitro function of MT2 A736V variants

We first demonstrated that the proportion of MT2736A and MT2736V

variants expressed on the surface of transfected cells was similar
(Figure 1A). We next observed that the MT2736A variant inhibited
the luciferase-hepcidin promoter more efficiently than MT2736V,
with a dose-dependent effect at low concentrations (Figure 1B). In
agreement with the luciferase assay, the release of the serine
protease domain, which we have shown to be correlated with
protease activity,6,8 was slightly increased in cells transfected with
the more active MT2736A variant compared with MT2736V (supple-
mental Figure 1 top panel). These results suggest that rs855791 is a
functional variant. Western blot on cell lysates and phospholipase
C were not sensitive enough to detect a significant difference in the
cleavage of HJV between the 2 variants (supplemental Figure 1
bottom panel).

Based on gene-expression analysis, it was proposed that
rs4820268, the other TMPRSS6 variant that is significantly associ-
ated with iron and erythrocyte traits,10,18 might cause a differential
allelic expression (60:40 ratio) of TMPRSS6 mRNA.19 However, it
is unlikely that the modest difference observed results in detectable
changes of the protease activity. rs4820268 is in linkage disequilib-
rium (R2 � 0.811 in the VB cohort) with rs855791; therefore, its

association with iron and erythrocyte traits might simply be
secondary to that of rs855791.

The human database indicates V at the 736 position as the
“wild-type” MT2. However, comparative analysis indicates A as
the ancestral amino acid, because A is evolutionary conserved in all
the species in which an annotated MT2 sequence is available
(Figure 1C). This observation suggests that the MT2736V variant,
which leads to increased hepcidin production and inhibition of iron
absorption, is a recent evolutionary change.

Hepcidin levels of normal carriers of MT2736 variants

We validated our in vitro results in the VB cohort, which had serum
hepcidin levels measured. Because in a genetic isolate, many
individuals are related, only a group of 655 unrelated individuals
was studied. We also selected 545 normal subjects after excluding
iron-deficient individuals (serum ferritin � 30 ng/mL) and individuals
with clinically relevant inflammatory conditions (C-reactive protein
� 1 mg/dL).11 Serum hepcidin levels were lower in AA compared with
VV homozygous individuals. The difference was not significant in the
whole series, only in the selected subset (P � .038; Figure 2 and
supplemental Table 1). Because hepcidin expression is strongly
dependent on both iron stores and plasma iron, we normalized
hepcidin on ferritin and on transferrin saturation. In both cases,
we confirmed that the normalized values were significantly
lower in AA compared with VV homozygotes (P � .038 for
hepcidin/ferritin and P � .056 for hepcidin/transferrin satura-
tion, respectively) in subset 1 (Figure 2 and supplemental Table
1). Consistently, iron and transferrin saturation were higher in
AA than in VV homozygotes (Figure 2 and supplemental Table
1), as was observed previously.9 Mean corpuscular volume and
mean corpuscular hemoglobin showed a similar trend, although

Figure 1. In vitro characterization of the function of
MT2 variants and evolutionary conservation of the
catalytic domain. (A) Quantification of membrane-
bound MT2 (MT2) by binding assay. HeLa cells were
transiently transfected with the TMPRSS6 cDNA encod-
ing MT2736V, MT2736A, or the empty vector (mock) and
analyzed for the percentage of MT2 on the cell surface.6

The amount of surface MT2 was calculated as the ratio
between the absorbance of unpermeabilized and perme-
abilized cells. Error bars indicate SD. (B) Hepcidin
promoter activity assay. Hep3B cells were transiently
transfected with 0.25 �g of pGL2-basic reporter vector
(Promega) containing the 2.9-kb fragment of the human
hepcidin promoter23 in combination with pRL-TK Renilla
luciferase vector (Promega) and HJV, as described
previously.6 Increasing doses (from 0.002 to 0.01 �g/mL)
of MT2736V- or MT2736A-expressing vectors were used.
Relative luciferase activity was calculated as the ratio of
firefly (reporter) to Renilla luciferase activity and is
expressed as a multiple of the activity of cells transfected
with the reporter alone. Experiments were performed in
triplicate. The statistical significance is indicated above
the bars. (C) Alignment of part of the serine protease
domain of MT2 of different species by multiple sequence
alignment ClustalW (EMBL-EBI) program. The se-
quence is highly conserved. The human 736 and the
orthologous position in the other species are boxed.
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the difference did not reach statistical significance (supplemen-
tal Figure 2). No difference was found for ferritin, transferrin, or
hemoglobin levels (supplemental Figure 1 and not shown).

Our results suggest that MT2 influences normal hepcidin
response to both plasma and total body iron. Hepcidin regulation is
complex.2 In mice, the hepcidin response to isolated increase of

transferrin saturation20 or to an acute iron increase21 differs from
the response to increased total body iron or to chronic iron
treatment. Both responses are based on the same BMP-signaling
pathway and on SMAD activation, but only the second entails a
BMP6 increase.20,21 The difference in the hepcidin/transferrin
saturation and hepcidin/ferritin ratios observed between the
two TMPRSS6 genotypes strengthens a role for MT2 in counterbal-
ancing both BMP6-dependent and BMP6-independent hepcidin
up-regulation. The reduced activity of MT2736V demonstrated by
the in vitro assay is in agreement with the effect observed in vivo.

MT2736V is the less frequent allele, with a frequency of 0.45 in
VB, as in other white populations. From the available studies, the
distribution among different populations is not homogeneous
(supplemental Table 2). Although the samples analyzed are limited,
MT2736A seems largely prevalent among blacks (0.80-0.90) com-
pared with whites (0.50)9,11,14 and Japanese (0.40).22 Whether the
variant might provide an advantage by enhancing iron absorption
in conditions of limited dietary availability or may have conferred
protection against certain infections remains to be clarified in
future studies.

In conclusion, our data indicate that TMPRSS6 rs855791 has a
functional role in determining protease activity and regulating
hepcidin expression both in vitro and in normal subjects, suggest-
ing that it influences the hepcidin response to the increase of both
circulating and total body iron.
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