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Clinical observations and laboratory evi-
dence link bone marrow failure in myelo-
dysplastic syndrome (MDS) to a T cell–
mediated immune process that is
responsive to immunosuppressive treat-
ment (IST) in some patients. Previously,
we showed that trisomy 8 MDS patients
had clonally expanded CD8� T-cell popu-
lations that recognized aneuploid hemato-
poietic progenitor cells (HPC). Further-
more, microarray analyses showed that
Wilms tumor 1 (WT1) gene was overex-

pressed by trisomy 8 hematopoietic pro-
genitor (CD34�) cells compared with
CD34� cells from healthy donors. Here,
we show that WT1 mRNA expression is
up-regulated in the bone marrow mononu-
clear cells of MDS patients with trisomy
8 relative to healthy controls and non–
trisomy 8 MDS; WT1 protein levels were
also significantly elevated. In addition,
using a combination of physical and func-
tional assays to detect the presence and
reactivity of specific T cells, respectively,

we demonstrate that IST-responsive MDS
patients exhibit significant CD4� and
CD8� T-cell responses directed against
WT1. Finally, WT1-specific CD8� T cells
were present within expanded T-cell re-
ceptor V� subfamilies and inhibited hema-
topoiesis when added to autologous pa-
tient bone marrow cells in culture. Thus,
our results suggest that WT1 is one of the
antigens that triggers T cell–mediated
myelosuppression in MDS. (Blood. 2011;
117(9):2691-2699)

Introduction

Clinical and laboratory evidence suggests that bone marrow failure
in myelodysplastic syndrome (MDS) is an immune-mediated
process in some patients. In particular, analysis of T-cell receptor
(TCR) �-chain variable (V�) domain usage and spectratyping of
V� families have revealed oligoclonal expansions of CD8�

T lymphocytes, which are selectively cytotoxic to trisomy 8 cells in
patients with this form of MDS.1,2 Furthermore, patients with
trisomy 8 are more likely to improve hematologically with
immunosuppressive treatment (IST) compared with patients with
other forms of MDS.2 After IST, the expanded V� subfamilies
decline in number and the proportion of trisomy 8 cells in the bone
marrow increases. Moreover, in vitro depletion of T cells from the
bone marrow increases the proportion of cultured trisomy 8 cells.2

We hypothesized that either a neoantigen or an overexpressed
self-antigen presented by trisomy 8 cells, and possibly by cells in
other forms of MDS, might elicit an MDS-specific cytotoxic CD8�

T-cell response. Immune-mediated suppression of the MDS clone and
bystander damage to normal hematopoietic cells could then induce bone
marrow failure.3,4 Several genes, particularly cyclin D1 and Wilms tumor
1 (WT1), are overexpressed in microarray analyses of CD34� cells from
trisomy 8 bone marrow compared with CD34� cells from healthy donor
bone marrow.5 In addition, WT1 appears to be up-regulated in CD34�

cells in MDS patients compared with healthy controls,6 and the
expression level increases with disease progression.7,8

The WT1 protein can be immunogenic. For example, CD8�

T-cell responses directed against the immunodominant human

leukocyte antigen (HLA)-A*0201–restricted epitope WT1126-134

(RMFPNAPYL) have been generated from donor peripheral blood
mononuclear cells (PBMCs) and can specifically lyse leukemic but
not normal hematopoietic progenitor cells.9 Indeed, based on
several observational studies, WT1 peptide vaccines are currently
being evaluated for immunotherapeutic purposes in patients with
myeloid malignancies.10-13

Here, we explore the potential role of self-directed T-cell
responses specific for WT1 in the myelosuppression that accompa-
nies trisomy 8 MDS. Our data demonstrate WT1-specific
CD4� and CD8� T cells in trisomy 8 patients and responders to
IST. The dominant T-cell expansions in a patient contain antitri-
somy 8 reactivity and respond to WT1. These results suggest that
WT1-specific T cells may contribute to disease pathogenesis.

Methods

Patients and controls

Patients with refractory anemia MDS classified in accordance with the
French-American-British14 system were enrolled to receive treatment with
horse antithymocyte globulin, antithymocyte globulin plus cyclosporine
A, cyclosporine A alone, or alemtuzumab, in sequential protocols
00-H-0169, 04-H-0026, 95-H-0189, and 05-H-0206 approved by the
Institutional Review Board of the National Heart, Lung and Blood Institute.
Patient characteristics are summarized in supplemental Table 1 (available
on the Blood Web site; see the Supplemental Materials link at the top of the
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online article). Samples from 35 healthy control donors were obtained from
subjects participating in National Heart, Lung and Blood Institute protocol
07-H-0113.

Monoclonal antibodies

The following commercially available fluorochrome-conjugated monoclo-
nal antibodies (mAbs) were used: (1) �-CD3-Alexa 700, �-CD3-
phycoerythrin (PE)-Cy7, �-CD3-fluorescein isothiocyanate (FITC), �-TCR-
��-FITC, �-CD8-Pacific Blue, �-CD8-peridinin chlorophyll protein,
�-CD14-PE, �-CD19-PE, �-tumor necrosis factor (TNF)-FITC, �-inter-
feron-� (IFN-�)-Alexa-647, �-IFN-�-PE-Cy7, �-IL-2-allophycocyanin
(APC), and �-Macrophage inflammatory protein-1� (MIP1�)-PE (BD
Biosciences Pharmingen); (2) �-CD28-FITC, �-CD28-PE, �-CD27-PE-
Cy5, �-CD8-PE-Cy5, �-CD4-Texas Red-PE (TxPE), and �-CD45RO-
TxPE (Beckman Coulter); (3) a panel of 21 FITC- or PE-conjugated human
TCRV�-specific mAbs from Immunotech; (4) �-TCRV�6.7-FITC (Endo-
gen); (5) �-CD4-PE-Cy5.5 (eBioscience); (6) �-TNF-PE, �-IL-2-APC,
�-CD8-APC-Alexa 750, �-CD14-Pacific Blue, and �-CD19-Pacific Blue
(Invitrogen); and (7) �-CD4-peridinin chlorophyll protein-Cy5.5
(BioLegend).

Peptide synthesis

A WT1 peptide library consisted of 127 sequential 15-mer peptides, each
overlapping by 11 amino acid residues, was custom synthesized by New
England Peptide LLC. Peptides corresponding to optimal HLA-A*0201-
binding epitopes were prepared by Biosynthesis to a minimum purity of
95%. The identity of each peptide was confirmed by mass spectral analysis.
The following peptides, all restricted by HLA-A*0201, were used: WT1126-134

(RMFPNAPYL),15 cytomegalovirus (CMV) pp65495-503 (NLVPMVATV),16

and HIV-1 p17 Gag77-85 (SLYNTVATL).17

Cell separation

Density gradient centrifugation with lymphocyte separation media
(Organon) was used to isolate PBMCs and bone marrow mononuclear cells
(BMMNCs) as described previously.18

Fluorescence in situ hybridization

Cells were treated with hypotonic buffer composed of 0.075M KCl to
expose the nucleus at interphase, then fixed onto slides using methanol/
acetic acid (3:1). Fluorescence in situ hybridization was performed with
probes for chromosomes 5q, 7, 8, and 11 (Vysis) as described previously.2

Percentage positive staining was based on a 400-cell score. Three different
observers, blinded with respect to sample identity, examined 3 different sets
of slides, and the mean score was recorded. A healthy negative control and a
trisomy 8-positive control were included in each run.

Characterization of the TCR repertoire

Flow cytometry was used to analyze TCRV� expression patterns within the
circulating T-cell populations of MDS patients as described previously.2

Fresh PBMCs were stained with �-CD4, �-CD8, �-CD28, and one of
22 �-TCRV� mAbs for 15 minutes at room temperature. The distribution of
V� subfamilies was determined within the total CD4� and CD8� T-cell
populations and also within the corresponding subpopulations that ex-
pressed low levels of CD28. In addition, �-TCR��-FITC was used to
determine the contribution of each V� subfamily to the total ��TCR
repertoire. Values obtained for individual V� families were expressed as a
percentage of �� TCR-expressing CD4� or CD8� cells. Assignment of a
V� expansion was based on the observation of a percentage greater than
2 SD above the mean derived from a set of 12 age-matched healthy controls.

Peptide-major histocompatibility complex class I
tetrameric complexes

Soluble biotinylated peptide-major histocompatibility complex class I monomers
were produced and tetramerized with fluorochrome-conjugated streptavidin
and used as described previously.10,19,20

Flow cytometry for tetramer analysis

Sample staining was performed in 50 �L of phosphate-buffered saline
(PBS)/1% fetal calf serum using 3 � 106 PBMCs prestained with a violet
amine-reactive dye (Aqua-blue or ViViD; Invitrogen) to eliminate dead
cells from the final analysis. Fluorochrome-labeled HLA-A*0201 tetramers
(1-2 �g per test with respect to the peptide-major histocompatibility
complex class I component) were added for 15 to 30 minutes at 37°C. Cells
were washed once in PBS/1% fetal calf serum and subsequently stained
with pretitrated �-CD3, �-CD8, �-CD14, and �-CD19 mAbs for
20 minutes at room temperature. After a further wash in PBS containing
0.5mM ethylenediaminetetraacetic acid and 1% bovine serum albumin, the
cells were resuspended in 1% paraformaldehyde. Data were acquired on a
FACSCalibur or LSRII (BD Biosciences) flow cytometer. A minimum of
0.5 � 106 cells was acquired in each case. The HIV/HLA-A*0201 tetramer,
refolded around the p17 Gag77-85 (SLYNTVATL) peptide, was used as a
negative control. The CMV/HLA-A*0201 tetramer, refolded around the
pp65495-503 (NLVPMVATV) peptide, was used as a positive or negative
control according to serostatus. Data analysis was performed using FlowJo
Version 8.8.6 (TreeStar; for gating strategy, see Figure 3A).

Flow cytometry for intracellular cytokine production

To assess T-cell immunoreactivity to WT1, 106 cells were suspended in
RPMI 1640 supplemented with 10% heat-inactivated human AB serum
(Gemini Bio-Product), 2mM L-glutamine, 100 U/mL penicillin, and
100 �g/mL streptomycin (Invitrogen; R10) together with the costimulatory
mAbs �-CD28 and �-CD49d (1 �g/mL each; BD Biosciences Pharmin-
gen). Stimulation was performed with our WT1 peptide library at 1 �g/mL
final concentration for each individual peptide or staphylococcal entero-
toxin B (1 �g/mL; Sigma-Aldrich) as the positive control; medium alone
was used as the negative control. After incubation for 1 hour at 37°C/5%
CO2, brefeldin A (10 �g/mL; Sigma-Aldrich) was added and the cells were
incubated for a further 5 hours. In some experiments, the cells were
stimulated with antigen from the start in the presence of brefeldin A and
monensin (GolgiPlug and GolgiStop, respectively; both from BD Biosci-
ences Pharmingen). After stimulation, cells were first stained with ViViD or
Aqua-blue (Invitrogen) to eliminate dead cells and then with mAbs specific
for surface markers. In other experiments, the cells were stained with
�-TCRV� mAbs after antigen stimulation and then stained with mAbs
specific for CD3, CD4, CD8, CD27, and CD45RO. Next, the cells were
fixed and permeabilized with cytofix/cytoperm solution (BD Biosciences
Pharmingen) and then stained intracellularly for cytokines. Lastly, the cells
were washed, fixed, and analyzed using a custom-built LSRII or FACSAria
flow cytometer (BD Biosciences). At least 200 000 events were acquired
per tube. Data analysis was performed using FlowJo Version 8.8.6 (for
gating strategy, see Figure 2A-B). First, live T cells were discriminated from dead
cells, monocytes, and B cells in a CD3 versus ViViD/CD14/CD19 gate. In
some experiments, Aqua-blue was used instead of ViViD, and CD14 and
CD19 were not included in the analysis. Next, single cells were identified in
a forward scatter-area (FSC-A) versus FSC-height (FSC-H) plot, followed
by a FSC-A versus side scatter-area (SSC-A) plot to identify the intact
lymphocyte population. Next, CD4� and CD8� T cells were gated in a CD4
versus CD8 bivariate plot. Cytokines were identified directly in these T-cell
subsets or after the identification of central and effector memory CD4� and
CD8� T cells defined on the basis of CD27 and CD45RO expression.

Immunoblotting

Protein extracts were prepared from BMMNCs as described previously21

and quantified using the Micro BCA Protein Assay kit (Pierce Chemical).
Electrophoresis at 125 V was used to resolve proteins (10 �g/lane) in
12% Tris-glycine sodium dodecyl sulfate gels (Invitrogen). Resolved
proteins from the gel were then transferred to polyvinylidene difluoride
membranes (Invitrogen). The membrane was blocked for 2 hours with
5% bovine serum albumin in PBS and 0.05% Tween-20 and then incubated
with the primary mAb. Subsequently, membranes were incubated with the
horseradish peroxidase-conjugated secondary mAb, and the bands of
interest were detected using the ECL Plus system (GE Healthcare). To
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evaluate equal loading of the lanes, membranes were stripped in Immuno-
Pure IgG elution buffer (Pierce Chemical), reblocked, and probed with
�-actin polyclonal antibody. Densitometry analysis of the bands of interest
was performed using ImageQuant analysis software (GE Healthcare).
�-WT1 Ab C-19 was purchased from Santa Cruz Biotechnology; the
�-actin polyclonal antibody and the horseradish peroxidase-conjugated
mAbs were also purchased from Santa Cruz Biotechnology. To measure the
WT1 content in both CD34� and CD34� fractions, we purified CD34 cells
from BMMNCs using magnetically labeled cells and a positive selection
column placed in a magnetic field as described previously.5 The purity of
CD34 cells was 88% to 94% as determined by flow cytometry (EPICS
Altra; Beckman Coulter).

Measurement of WT1 mRNA by real-time quantitative RT-PCR

RNA extracted from column-purified CD34 cells as previously described22

was treated with DNase I (Invitrogen) to eliminate genomic DNA, and
random hexamer primed complementary DNA (cDNA) was synthesized
using the Advantage RT-for-PCR kit (Clontech). ABL expression was used
as the endogenous cDNA quantity control for all samples23; conditions for
the measurement of ABL expression were reported previously.24 Expression
of WT1 was measured using 500nM primers and 200nM probe as described
previously.25 All quantitative reverse-transcription polymerase chain reac-
tion (RT-PCR) experiments were performed in triplicate on 10 �L samples.
The ABI PRISM 7900 sequence detection system (Applied Biosystems)
was used with standard conditions and 40 cycles of amplification; primer
and probe sequences for quantitative RT-PCR are listed in supplemental
Table 2.

Trisomy 8 colony inhibition assay

To assess the effect of autologous T cells on trisomy 8 hematopoiesis, we
performed short-term (14-day) colony culture after incubation of BMMNCs
for 4 hours with autologous T cells from the expanded V� subfamily
purified by flow cytometry as described previously.2,26 The ratio of
BMMNCs to T cells during the incubation phase was 1:3 for the V�-
expanded CD8� T cells and 1:18 for the non–V�-expanded CD8� T cells.

Statistical methods

Summary statistics, including the mean, SD, and 95% confidence interval,
for the variables of interest were calculated separately for responders and
nonresponders. Statistical comparisons of these variables between the
responders and the nonresponders were performed using the 2-sample
t tests with possibly unequal variances and further confirmed using the
nonparametric Wilcoxon rank-sum tests. The statistical relationships be-
tween CD8�TNF-�� and trisomy 8 percentage, and CD4�TNF-�� and
trisomy 8 percentage among the trisomy 8 patients were evaluated using
linear regression models and the Pearson correlations. The F tests were used
to test the null hypotheses that these correlations were zero versus the
general alternatives that the corresponding correlations were nonzero. The
significance level for all the statistical tests was set at .05. Numerical results
were computed using the S-plus 8 statistical software Version 8.0.4
(TIBCO).

Results
Study population

We studied 61 MDS patients with refractory anemia, 24 of whom
had trisomy 8 (one trisomy 8 patient was studied twice), and
35 healthy donors. All samples were collected before IST. Patient
characteristics, cytogenetics, and IST responses are summarized in
supplemental Table 1.

Trisomy 8 BMMNCs show increased WT1 expression compared
with healthy donors and other MDS patients

Using quantitative RT-PCR, we assessed expression of WT1
mRNA in CD34 cells from 24 MDS patients before treatment with

IST (including 10 that did not receive IST) and 22 age-matched
healthy controls. Levels of WT1 mRNA were increased in MDS
patients with trisomy 8 compared with healthy controls (P � .001)
and nontrisomy 8 MDS patients (P 	 .04) (Figure 1A). For
patients with trisomy 8 MDS, WT1 mRNA expression levels
correlated with the percentage of trisomy 8 cells in bone marrow
samples (R2 	 0.77; P 	 .0004) (Figure 1B).

To determine whether increased mRNA expression resulted in
increased WT1 protein levels, we examined protein extracts from
column-purified CD34 cells of 4 IST-responsive patients with
trisomy 8 MDS, 3 IST-responsive patients without trisomy
8, 3 nonresponders, and 4 healthy controls (Figure 1C). Actin and
WT1 bands were quantified by immunoblot densitometry, and the
ratio was calculated to control for differential protein loading.
Patients responding to IST had increased WT1/actin ratios by
immunoblot compared with nonresponders (P 	 .008) and healthy
controls (P 	 .01; Figure 1C).

As nontandem DNA amplification of the 11q13 region is
observed frequently in many cancers27 and can be identified by
fluorescence in situ hybridization, we examined the WT1 gene
copy number in 6 patients using a probe for fluorescence in situ
hybridization analysis (a kind gift from John Crolla).28 However,
we were unable to detect duplication of the WT1 gene in trisomy
8 and diploid BMMNCs (supplemental Figure 1).

WT1-specific T cells are present in patients with trisomy 8 and
in patients with MDS who respond to immunosuppression

We next analyzed functional T-cell responses by intracellular
cytokine staining after stimulation of PBMCs with a comprehen-
sive WT1 peptide library. Thirty-eight patients with MDS were
studied; 14 of these had trisomy 8 as the sole cytogenetic
abnormality, 19 were responsive to IST, 13 were nonresponders,
and 6 patients were not treated with IST. Specific T-cell responses
to WT1 were based on the detection of at least one intracellular
cytokine above levels seen in unstimulated cells; the gating
strategy is shown in Figure 2A-B. WT1-specific CD4� and CD8�

T-cell responses were greatest in the patients who responded to IST.
For CD8� T cells, the mean frequencies in responders and
nonresponders were 1.90% and 0.43% for TNF-� (P 	 .0011),
1.42% and 0.66% for IL-2 (P 	 .0907), and 0.28% and 0.025% for
IFN-� (P 	 .0358), respectively. For CD4� T cells, the mean
frequencies in responders and nonresponders were 4.09% and
0.22% for TNF-� (P � .001), 1.07% and 0.11% for IL-2 (P 	 .011),
and 0.18% and 0.024% for IFN-� (P 	 .006), respectively (Figure
2C). The percentage of trisomy 8 cells in the bone marrow
correlated with the CD8� T-cell TNF-� response to the WT1
peptide library (P 	 .01; Figure 2D). Furthermore, CD4� T-cell TNF-�
responses also correlated with presence of HLA DR15 (P 	 .0173),
which is associated with response to IST29 (Figure 2E).

Identification of cognate CD8� T cells specific for the
immunodominant WT1126-134 peptide by
HLA-A*0201 tetramer analysis

Unstimulated PBMC samples from 25 HLA-A*0201� patients
with MDS (including 2 not treated with IST), 9 of whom
had trisomy 8 as the sole cytogenetic abnormality, and
25 HLA-A*0201� healthy donors were analyzed for circulating
WT1-specific memory CD8� T cells by flow cytometry using the
cognate WT1126-134/HLA-A*0201 tetrameric complex (Figure 3).
This peptide was selected because of reports of successful vaccina-
tion in patients with leukemias and solid tumors.30 Analysis was
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performed in a double-blinded fashion. The HIV p17 Gag77-85/HLA-
A*0201 and CMV pp65495-503/HLA-A*0201 tetramers were used
as negative and positive controls, respectively; the gating strategy
is shown in Figure 3A. WT1126-134/HLA-A*0201 tetramer binding

was significantly greater in the responders compared with nonre-
sponders (P � .0001) and healthy controls (P � .0001; Figure 3B).

WT1-specific CD8� T cells are contained within expanded
V� subfamilies and suppress trisomy 8 colony growth

Expanded V� subfamilies within the total CD8� T-cell populations
were identified previously for a subgroup of patients in the present
cohort.2 We therefore examined these V� expansions for the
presence of WT1-specific CD8� T cells in a patient with trisomy
8 (patient 1; supplemental Table 1). Memory CD8� T cells within
the expanded V� subfamilies were identified by flow cytometry
and observed to specifically produce cytokine in response to
stimulation with the WT1 peptide library; the corresponding responses
observed in the unstimulated controls were minimal (Figure 4A top
panel). The V�3 subfamily was previously sorted and found to be
oligoclonal; 2 predominant clonotypes (ASSDFRGAGYEQY and
ASSGGLEQY), both using TRBJ2-7, were detected.2

To assess the ability of memory T cells from the in vivo
expanded V� subfamilies, V�3, V�5.3, and V�22 to suppress the
growth of trisomy 8 colonies and express cytokines in response to
WT1, in vivo V�-expanded T cells were isolated by flow cytomet-
ric sorting, expanded for up to 3 weeks, and then tested in a
hematopoietic progenitor cell colony inhibition assay. Expanded
subfamilies were incubated with the WT1 peptide library, and
intracellular cytokine expression was measured. As a control, we
sorted T cells expressing nonexpanded V� subfamiles V�2 and
V�14. T cells in expanded V� subfamilies showed increased
cytokine production after preincubation with the WT1 peptide
library (Figure 4A top right panel).

Erythroid and myeloid trisomy 8 cells were suppressed signifi-
cantly by the V�-expanded CD8� T-cell populations; in contrast,
little or no inhibition was observed with the control population of
non–V�-expanded T cells despite their 3-fold greater numbers
compared with the specific V�-expanded cells (Figure 4A bottom
left panel). Tetramer-sorted CD8� T cells were not studied in these
experiments because of the confounding activation and apoptotic
effects of soluble ligand engagement.19

To confirm that cytotoxic CD8� T cells from expanded
V� subfamilies were specific for WT1, we further analyzed one of
the expanded V� populations in patient 1. PBMCs were stained
with the WT1126-134/HLA-A*0201 tetramer and then with directly
conjugated mAbs specific for CD3, CD8, CD27, CD45RO, and
V� domains. We were able to detect the presence of WT1126-134/
HLA-A*0201 tetramer-binding memory CD8� T cells within the
expanded V�3 subfamily (Figure 4B).

Discussion

Pancytopenia appears to arise from immune-mediated suppression
of hematopoiesis in some patients with MDS.31 To further our
mechanistic understanding of T cell–mediated myelosuppression in
MDS, we focused our study on patients treated with immunosup-
pression. Previously, we demonstrated the presence of CD8� T-cell
V� subfamily expansions in these patients and showed that these
cells suppress the growth of trisomy 8 colonies.2 Clinically, this
patient population is more likely to respond to IST.32 Here, we
examined WT1 gene expression and found that it is higher in MDS,
particularly in patients with trisomy 8. Although WT1 acts as a
tumor suppressor in the kidney, its overexpression in hematopoietic
cells is associated with leukemia.33 The mechanism for overexpres-
sion of WT1 in MDS is not well understood; however, the

Figure 1. Increased WT1 mRNA and protein expression in trisomy 8 MDS.
(A) Quantitative RT-PCR for WT1 mRNA expression was performed on BMMNCs
from patients with trisomy 8 (n 	 12), MDS patients with other cytogenetic abnormali-
ties (n 	 12), and healthy donors (n 	 22) as described in “Measurement of WT1
mRNA by real-time quantitative RT-PCR.” Patients with trisomy 8 had significantly
increased WT1 mRNA expression levels compared with non–trisomy 8 MDS patients
(P 	 .04) and healthy donors (P � .001). (B) The extent of WT1 overexpression was
proportional to the percentage of trisomy 8 cells in the BMMNC sample (P 	 .0004;
R2 	 0.7705). (C) Immunoblots were performed on total protein extracted from the
CD34� of 7 patients responsive to IST (4 of whom had trisomy 8), 3 patients not
responsive to IST, and 4 healthy controls; representative examples are shown with
densitometry readings expressed as the ratio of WT1 protein/actin protein. Patients
who later responded to IST had increased protein ratios of WT1/actin.
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Figure 2. Functional WT1-specific T cells are present in IST-responsive MDS patients. (A) PBMCs from 38 patients with MDS were stimulated with a comprehensive
WT1 peptide library as described in “Flow cytometry for intracellular cytokine production.” Cells cultured in R10 alone were used as negative controls. Live T cells were
discriminated from dead (ViViD�) cells, B cells, and monocytes in a dump versus CD3 bivariate plot. Next, single cells were selected in a FSC-A versus FSC-H plot, and inact
lymphocytes in a FSC-A versus side scatter-area (SSC-A) plot. Fluorochrome aggregates were then excluded (not shown) before selection of the CD4� and CD8� T cells.
(B) Cytokine production after stimulation for 6 hours with the WT1 peptide library or positive control (staphylococcal enterotoxin B); unstimulated cells were used as a negative
control. The percentages of cytokine-producing CD4� (bottom) and CD8� (top) T cells are shown for IST-responsive patients 45 and 50, respectively. (C) A composite figure for
cytokine expression in response to stimulation with the comprehensive WT1 peptide library in IST responders and nonresponders. Horizontal bars represent mean values.
(D) WT1-specific TNF-� production by CD4� and CD8� T cells was correlated with the percentage of trisomy 8 cells in the bone marrow. (E) WT1-specific TNF-� production by
CD4� T cells was correlated with the presence of HLA DR15.
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association between WT1 expression and activation of the antiapo-
ptotic genes, specifically A1/BFL1,34 could favorably affect the
survival of cells that overexpress WT1. In this study, we demon-
strated that WT1 is overexpressed in MDS and, in particular, in the
trisomy 8 form; indeed, the degree of WT1 overexpression

correlated with the percentage of trisomy 8 cells in the sample.
Furthermore, WT1-specific T cells, identified by tetramer analysis
and intracellular cytokine assays, suppressed trisomy 8 colony
formation, and the presence of these cells correlated with a
response to IST. These data are congruent with published results,

Figure 3. Frequencies of memory CD8� T cells that bind the WT1126-134/HLA-A*0201 tetramer are greater in IST responders compared with nonresponders.
(A) Gating strategy and an example of tetramer binding are shown (patient 4; supplemental Table 1). Live T cells were separated from dead cells, B cells, and monocytes in a
CD14/CD19/ViViD (dump channel) versus CD3 bivariate plot, and single cells were identified in a FSC-A versus FSC-H plot. Intact lymphocytes were next identified in an
FSC-A versus SSC-A plot. Fluorochrome aggregates were subsequently excluded from the analysis in a CD45RO versus CD8 plot. Naive cells were identified within the CD8�

T-cell pool as CD27�CD45RO�CD57� cells (bottom panels); memory CD8� T cells were identified within the L-gate shown in the CD27 versus CD45RO plot. Binding of the
WT1126-134/HLA-A*0201 tetramer was observed in the memory CD8� T-cell compartment but not in naive or CD8� memory T-cell populations (top right panels). The HIV p17
Gag77-85/HLA-A*0201 and CMV pp65495-503/HLA-A*0201 tetramers were used as negative and positive controls, respectively. (B) The mean frequency of memory CD8� T cells
binding to the WT1126-134/HLA-A*0201 tetramer in IST responders was significantly higher compared with IST nonresponders (P � .0001) and healthy controls (P � .0001).
R, responders; NR, nonresponders; Normal, healthy controls.
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which demonstrate that relatively small populations of lympho-
cytes can produce significant target organ damage in diabetes35 and
multiple sclerosis.36 In addition, leukemia patients who respond
clinically to WT1 vaccine have few WT1-specific cytotoxic
lymphocytes.37 It is probable that the immune response of patients
with MDS is directed against WT1 epitopes other than the
WT1126-134 peptide, as the response of CD8� T cells to the
comprehensive WT1 peptide library was 10-fold in excess of that
for the WT1126-134 peptide. Indeed, at least 4 native peptide
nonamers from human WT1 have been shown to generate a
WT1-specific cytotoxic response capable of killing leukemic cell
lines.30,38,39

The WT1126-134 epitope, restricted by HLA-A*0201, is the most
extensively studied immunogenic peptide derived from the WT1
protein. CD8� T cells specific for this peptide are seen in patients
with myeloid malignancies and after allogeneic stem cell transplan-
tation.40 Antibodies specific for WT1 are also detectable in human
leukemia and MDS patients.41,42 We previously demonstrated that
WT1-specific CD8� T cells exhibit a memory phenotype in
patients with leukemia and thus represent autoreactive T cells that
have presumably escaped thymic clonal deletion. In MDS, overex-
pression of WT1 may induce the expansion of such antigen-specific
CD8� T cells, thereby leading to an autoimmune suppression of the
MDS clone as well as the residual normal marrow cells; the latter

Figure 4. CD8� T cells within expanded V� subfamilies respond functionally to WT1 peptides and suppress trisomy 8 colony growth. Functional and tetrameric
analyses of CD8� T cells within expanded V� subfamilies were performed using samples from patient 1. (A) Expanded CD8� T-cell subfamilies were identified by flow
cytometry using directly conjugated V�-specific mAbs (top left panel). PBMCs from patient 1 were stimulated with a comprehensive WT1 peptide library and stained as
described in “Flow cytometry for intracellular cytokine production.” CD8� T cells within the expanded V� subfamilies showed substantial intracellular cytokine production
compared with unstimulated controls (top right panel). Expanded and control, nonexpanded V� subfamilies were subsequently sorted by flow cytometry and cultured for up to 3
weeks. These T-cell lines were then tested for clonogenic hematopoietic progenitor cell lysis (bottom left panel): Autologous BMMNCs were incubated for 4 hours with the
(25 Gy-irradiated) expanded T cells (BM � T INC) before plating in semisolid medium containing cytokines to support hematopoietic progenitor cell growth.26 WT1 specificity of
the T-cell lines was assessed in this assay by pulsing the BMMNCs with the WT1 peptide library before this 4-hour preincubation (BM � T � WT1 INC). As a negative control,
we incubated T cells and BMMNCs separately before mixing and plating (BM � T NO INC). Suppression of trisomy 8 cell growth was observed, relative to both controls in the
absence of CD8� T cells and in the presence of 3 times the number of CD8� T cells from V� subfamilies that were not expanded (bottom panel). (B) Cognate
WT1126-134/HLA-A*0201 tetramer-binding memory CD8� T cells were present within the expanded V�3� subfamily.
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might be mediated by epitope spreading or via a bystander effect
from cytokines released during CD8� T-cell engagement of
cognate targets. Successful IST reduces the WT1-specific CD8�

T cell–induced marrow suppression and hence allows hematopoi-
etic recovery. The cytokine elaborated after lymphocytes were
exposed to the WT1 peptide library in this study was primarily
TNF-� in all patients except one, who developed MDS after
aplastic anemia; in this case, reactive lymphocytes secreted predomi-
nantly IFN-�. These data are compatible with previous descriptions
of TNF-� dysregulation43,44 and with the clinical success of
anti-TNF agents in selected MDS patients.45 Furthermore, others
have noted that lymphocytes from patients with AA overexpress
IFN-�,46 whereas those from patients with MDS secrete TNF-�.47

These findings suggest that, despite their similarities, the immuno-
logic processes in MDS and AA are different. Our findings do not
exclude other antigens from playing a role in the MDS-associated
immune response. Indeed, in patients with significant apoptosis, it
is probable that apoptotic bodies48 and caspase-cleaved proteins49

might themselves serve as antigenic stimuli.
The fact that the magnitude of CD4� and CD8� T-cell cytokine

expression after incubation with the WT1 peptide library was
substantially greater compared with responses directed against the
WT1126-134 peptide suggests that other antigenic peptides play a
prominent role in the immune response in these patients. This is
consistent with the data of other investigators who found WT1235-243

sufficiently immunogenic to vaccinate patients with acute leuke-
mia.13 Furthermore, CD4� T-cell responses to WT1 were generally
more pronounced compared with the corresponding CD8� T-cell
responses in our study. In addition, other investigators have
observed a pronounced contraction of naive and central memory
cells together with an accumulation of effector and terminal
effector-memory cells within the CD4� T-cell compartment in
younger MDS patients responsive to IST.50 These data suggest a
role for WT1-specific CD4� T-cell responses in MDS, either
through the provision of helper functions to WT1-specific CD8� T
cells or even via direct effects.51 The correlation between the
presence of HLA DR15 and the WT1-specific CD4� T-cell
response further strengthens our hypothesis that WT1 is important
in the pathophysiology of immune-responsive MDS; HLA DR15 is
more frequent in patients with MDS and correlates with response
to IST.29

MDS clones are not eradicated by WT1-specific CD8� T cells;
other studies from our laboratory suggest an explanation. Trisomy
8 cells show markers of early apoptosis reflective of immune
attack.2 However, survivin, a potent inhibitor of apoptosis, is
up-regulated in trisomy 8 cells52 and blocks apoptosis upstream of
caspase 8, thereby blocking DNA degradation and allowing the
cells to survive. Thus, although partially suppressed, trisomy
8 cells may avoid complete elimination by CD8� T cells. Trisomy
8 cells increase after successful IST and, in many of these patients,
the marrow morphology returns to normal, suggesting that dyspla-
sia results from immune attack.2 Such a mechanism would be in

keeping with the hematologic recovery that can follow successful
immunosuppression. Our findings raise questions about the long-
term outcome after IST in MDS. Reduction in T-cell autoreactivity
and subsequent unchecked proliferation of the MDS clone could
potentially increase the likelihood of disease progression. Nonethe-
less, in our experience of more than a decade of observation,
patients receiving IST have a decreased progression to leukemia
compared with historical controls.1,2

Several laboratories have generated WT1-specific CD8� T cells
against epitopes restricted by HLA-A*0201 and HLA-A*2402.15,53

It is established that CD8� T cells generated against synthetic
WT1 peptides lyse both autologous WT1-loaded cells and
WT1-expressing leukemia cell lines. In these studies, lysis of
freshly isolated acute leukemia cells was shown to be HLA-
restricted and specific for WT1-expressing cells,54 whereas normal
hematopoiesis was not suppressed. Indeed, WT1 peptide vaccines
are currently under investigation by our group and others as a form
of immunotherapy for leukemias in which WT1 is overex-
pressed.13,55 Our findings suggest that a WT1-based vaccine could
have paradoxical effects in MDS with overexpression of WT1;
thus, vaccine-boosted T cells might suppress the MDS clone but
accentuate marrow failure. Of note, it has been reported that
2 patients with hypoplastic MDS developed severe pancytopenia
after vaccination with WT1, necessitating the use of high-dose
steroids to abrogate the WT1-specific immune response.56 On the
other hand, vaccination might remove the inciting cause of the
immune response and eventually restore normal hematopoiesis.
Overall, then, WT1 vaccination in MDS patients should be
performed with caution, especially in cases associated with signifi-
cant pancytopenia.
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