bortezomib. It is not immediately apparent
which of these is better than conventional
treatment. This uncertainty together with
the large number of drugs to test will likely
sound the death knell for the conventional
phase 3 trial, especially when utilizing con-
ventional hazard ratios. Phase 3 trials are
ill-suited for a disease as heterogeneous as
AML. Both in Europe and recently in US
cooperative groups, smaller comparative
trials have been explored, under the as-
sumption that the worst false-negative re-
sults when a drug is not studied at all.*
In this way, as in the introduction of
qualitatively distinct drugs such as lenalido-
mide, clinical research in AML is truly
in ferment.
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CD9I phones home with a TEM of its own

Alexander W. Brown and Michael R. Savona SAN ANTONIO MILITARY MEDICAL CENTER

Tetraspanins are small molecule proteins known to impact cellular migration
and signaling. In this issue of Blood, L.eung and colleagues uncover a novel
function of the tetraspanin molecule CD9Y as a potential mediator of

CD34" cell homing.!

ignaling between CXCR4 and its li-
s gand—stromal-derived factor 1 (SDF-1/
CXCR12)—is clearly important in hematopoi-
etic stem cell (HSC) homing and engraftment,
but the precise mediators involved are unclear.
Recently, attempts to exploit this axis for benefit
in the clinic have led to the development of the
CXCR4 inhibitor, plerixafor,? and several other
similar agents are in development. Given the
catastrophe of engraftment failure in hematopoi-
etic stem cell transplantation (HSCT), and the
increased rates of such an outcome with cord
blood HSCT in adults, attempts to maximize
engraftment by enhancing homing are

tantalizing.
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The use of microarray screening technol-
ogy in the elucidation of essential mechanistic
targets led to many exciting discoveries in the
past decade; in this issue, L.eung and col-
leagues explore the role of CD9, a tetraspanin
protein found in a screen, as one in a series of
genes preferentially induced by SDF-1 in hu-
man CD347 cord blood cells.

Cell-surface proteins of the tetraspanin
family have 4 transmembrane domains, intra-
cellular N and C termini, and 2 extracellular
domains. Tetraspanins are thought to act as
scaffold proteins: multimolecular organizers
which anchor proteins to one area of the cell

membrane thereby forming structures known

'.) Check for updates

as tetraspanin-enriched microdomains
(TEMs).3 Tetraspanins are therefore often
considered molecular facilitators modulating
the activities of their associated molecules de-
pending upon the TEM composition. Inter-
estingly, a TEM formed by CD9 often in-
cludes HSC homing proteins Bl integrin,*
MTI-MMP,?and CD26.57

Leung et al transplanted CD34*CD9~
cells and whole CD34* cells (CD9 antibod-
ies used to positively select CD34*CD9™*
cells had neutralizing effect and were not used
for this reason) into NOD.CB. 17-Prkdc/ F
(NOD-Scid) mice, both with and without
anti-CD122 antibody. After establishing a
clear increase in homing among
CD34*CD9* cells in the bone marrow and
spleen of mice 20 hours after transplanta-
tion, the authors elegantly put several
known pharmacologic inhibitors of the ef-
fectors of the SDF-1/CXCR4 pathway to
use to suggest a signaling pathway leading to
CD9 expression via activation of the tran-
scription factor STAT. Interestingly, phos-
phatidylinositol 3-kinase was not involved in
signaling of CD9 transcription as it is with
other factors involved in homing via medi-
ated SDF-1.8

Enhancement of stem cell engraftment has
significant clinical relevance in the era of cord
blood transplantation. Leung and colleagues
are the first to demonstrate that CD9 enrich-
ment improves homing of CD347 cells to the
bone marrow in the in vivo xenograft assay.
It will be interesting to explore potential
relationships between CD9 and other SDF-
1-induced proteins—regardless of their asso-
ciation with the CD9 TEM—known to im-
pactHSC homing such as CD44° and CD26.°
And, of course, the question remains open as
to the effect this improved homing will have
on HSC engraftment.
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Fitness without exhaustion

Claude Perreault uNIVERSITE DE MONTREAL

Next-generation adoptive leukemia immunotherapy will likely be based on injec-
tion of T cells targeted to specific antigens (Ag). This approach is currently limited
by our inability to generate sufficient numbers of Ag-specific T  cells that can sur-
vive and proliferate in vivo. In this issue of Blood, Wang and colleagues demon-
strate that central memory T cells can generate ex vivo Ag-specific T cells that

thrive well after in vivo transfer.!

ure of hematologic malignancies after
c standard allogeneic hematopoietic cell
transplantation (AHCT) is due mainly to the
so-called graft-versus-leukemia (GVL) effect,
that is, eradication of host neoplastic cells by
donor T cells. The allogeneic GVL effect rep-
resents, by far, the most successful form of
cancer immunotherapy in humans. It is initi-
ated by T cells mostly found in the naive com-
partment, which recognize minor histocom-
patibility Ags (MiHAs) and also
perhapsleukemia-associated Ags.>?

GVL induction has practically not evolved
over the last 2 decades. Accordingly, despite
its great paradigmatic and clinical relevance,
the allogeneic GVL effect remains a quite ru-
dimentary form of leukemia immunotherapy.
It still involves injection of unselected donor
lymphocytes that have not been primed
against their target Ags. This current ap-
proach is fraught with 2 major limitations.
First, injection of polyspecific allogeneic
T cells lacks specificity and is therefore highly
toxic: these T cells react against several host
MiHAg, resulting in graft-versus-host disease
(GVHD) in 60% of recipients. Second, naive
unprimed T cells induce only an attenuated
form of GVL reaction because, in contrast to
pre-activated T cells, they can become tolerant
after encounter with tumor cells. Experimen-

tal mouse models have revealed that far supe-
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rior results could be achieved by adoptive im-
munotherapy with preactivated Ag-specific

T cells: primed T cells targeted to a single
MiHA have cured leukemia and melanoma
without causing any toxicity to the host.*’ The
outcome depended on 2 T-cell effector
mechanisms: direct killing of neoplastic cells
by granule exocytosis and inhibition of angio-
genesis by interferon y.*+’

Ifleukemia immunotherapy with activated
Ag-specific T cells holds such great promises,
what is the problem with its application in
humans? The mean frequency of Ag-specific
T cells in the preimmune human T-cell reper-
toire is approximately 107> and at least 108 to
10 Ag-specific T cells are presumably re-
quired for successful treatment.®’ Therefore,
procurement of sufficient numbers of T cells
for immunotherapy requires massive expan-
sion of the few Ag-specific T cells presentin a
donor’s peripheral blood. Proof-of-principle
studies in mice resorted to a trick that cannot
be used in humans: expansion of Ag-specific
T cells was performed in vivo by immunizing
the donor against the target Ag.* Because
donor immunization would raise major ethical
issues in humans, we are left with one possibil-
ity: to proceed with ex vivo expansion of Ag-
specific T cells. That would be theoretically
feasible if we knew how to generate self-

renewing memory T cells. While such

memory T cells having stem cell-like self-
renewal potential exist in vivo,%1” we ignore
how to generate them ex vivo. Current meth-
ods for ex vivo expansion of Ag-specific T cells
yield poorly functional exhausted T cells that
rapidly disappear after in vivo transfer. None-
theless, we know that naturally occurring
memory stem cells reside in the pool of central
memory T cells (Tcy). Using an instructive
mouse model, Wang et al found that after mas-
sive ex vivo expansion, the progeny of human
Ty established a persistent reservoir of func-
tional T cells in vivo.! Accordingly, they now
propose a novel strategy for generating thera-
peutically relevant numbers of Ag-specific
T cells: introduction of genes encoding tumor-
specific receptors into Ty followed by ex vivo
expansion and adoptive transfer. It is of course
difficult to predict the merit of that approach,
but further studies along those lines will be
instructive and are eagerly awaited.
Conflict-of-interest disclosure: The author
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