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Acute myeloid leukemia with a FLT3 inter-
nal tandem duplication (FLT3/ITD) muta-
tion is an aggressive hematologic malig-
nancy with a generally poor prognosis. It
can be successfully treated into remis-
sion with intensive chemotherapy, but it
routinely relapses. At relapse, the blasts

tend to have higher mutant allelic ratios
and, in vitro, are more addicted to the
aberrant signaling from the FLT3/ITD on-
coprotein. They remain highly responsive
to FLT3 ligand, the levels of which rise
several-fold during the course of chemo-
therapy. The question now arises as to

whether these high levels of FLT3 ligand
are actually promoting relapse, and, if so,
how we can use this information to adjust
our therapeutic approach and improve
the cure rate for acute myeloid leukemia
with FLT3/ITD. (Blood. 2011;117(26):
6987-6990)

Introduction

The law of unintended consequences teaches us that, when we
intervene in a complex system, we invariably create unanticipated
and sometimes undesirable outcomes. Our attempts to treat the
disease known as acute myeloid leukemia with a FLT3 internal
tandem duplication (FLT3/ITD AML) mutation certainly could be
characterized as an intervention in a complex system, and the
question can now be raised as to whether we are creating an
unintended consequence with our therapeutic approach.

FLT3 is a cytokine receptor that is expressed on the leukemic
blasts in most cases of acute leukemia.1-5 On binding FLT3 ligand
(FL), FLT3 dimerizes and undergoes a conformational change,
causing its activation loop to assume an open conformation and to
allow ATP access to the ATP-binding pocket. Ligand-activated
FLT3 undergoes autophosphorylation and, through a series of
kinase cascades, transduces signals promoting cell growth and
inhibiting apoptosis through proteins such as Ras-GTPase activat-
ing protein, phospholipase C �, STAT5, and ERK1/2.6-12 The
ligand, FL, is expressed in virtually all cell types thus far examined,
including leukemia cells.13-15 In contrast, the receptor, FLT3, has a
fairly narrow range of cell expression, being localized primarily to
hematopoietic and neural tissues, which presumably confines its
functions to these cell types.16 FL acts in synergy with other
cytokines to promote hematopoietic precursor expansion, and
targeted disruption of either FLT3 or FL in mice, although not
embryonically lethal, leads to a reduction in hematopoietic
precursors.17-24

FLT3/ITDs were first described in patients with AML in
1996 by Nakao et al.25 These mutations, which disrupt the
autoinhibitory function of the receptor’s juxtamembrane
domain, result in constitutive autophosphorylation of FLT3
within the blasts that harbor them.26,27 Fifteen years after this
initial discovery, FLT3/ITD AML now stands as a distinct
clinical entity, an often lethal subtype of AML that has been a
considerable challenge to those of us who treat it.28 Some recent
clinical and laboratory findings about this disease may provide
insight into why these patients relapse so quickly, and how we
might improve their outcomes.

FLT3/ITD mutations are present in roughly a quarter of adult
AML cases.29 In a minority of cases they represent a presumably

late mutation in AML, evolving out of an antecedent myelodysplas-
tic syndrome.30 However, the more characteristic presentation is
that of de novo disease, presenting with a high leukocyte count and
normal cytogenetics. Numerous retrospective analyses of clinical
trial results have established that patients with FLT3/ITD AML
achieve complete remission at or near the rate for patients with
AML lacking these mutations.31-34 However, equally well estab-
lished is the fact that patients with FLT3/ITD are far more likely to
relapse and do so more rapidly than their FLT3 wild-type counter-
parts. The median survival of FLT3 mutant AML after first relapse
has been reported to be � 5 months.35,36

Coincident with the recognition of FLT3/ITD AML as a disease
entity was the emergence of an important new anticancer therapy:
tyrosine kinase inhibitors (TKIs). The remarkable clinical activity
of imatinib mesylate for blast crisis chronic myelogenous leukemia
and Philadelphia-positive acute lymphocytic leukemia (2 diseases
with a number of similarities to FLT3/ITD AML) spurred the
development of FLT3 TKIs.37,38 Currently, older, multitargeted
FLT3 inhibitors are in advanced clinical trials, whereas newer,
more FLT3-selective inhibitors are entering development.39

There are important differences between the FLT3/ITD and
BCR-ABL oncoproteins however similar the diseases they cause
might seem to be. Unlike BCR-ABL, FLT3 is a transmembrane
protein primarily localized to the plasma membrane, where it binds
its cognate ligand, the cytokine FL. Why would the ligand have any
effect on a receptor tyrosine kinase that is supposed to be
constitutively activated? Recent evidence suggests that the ITD-
mutated receptor is, in fact, heavily influenced by FL. FL is
coexpressed with FLT3 in leukemia cells and is up-regulated in
response to FLT3 inhibition. When the FLT3/ITD receptor is
expressed in cells that completely lack FL (derived from an FL�/�

mouse), it shows only weak autophosphorylation.40 This finding
casts the FLT3/ITD oncoprotein in a wholly different light: not as
an autonomously activated receptor but rather as one that is simply
hyperresponsive to its ligand. To complicate matters further, FL
markedly interferes with the ability of TKIs to inhibit FLT3
signaling.41 Indeed, the surge of FL after chemotherapy may have
been responsible for the generally poor level of in vivo FLT3
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inhibition observed in the recent trial of lestaurtinib after chemo-
therapy.36 The influence of FL on FLT3/ITD signaling will
probably be quite problematic to efforts aimed at incorporating
FLT3 inhibition into conventional AML chemotherapy regimens.
Aplasia-inducing radiation or chemotherapy has been well estab-
lished to induce significant increases in FL levels,42-44 which in turn
would block the effects of FLT3 inhibitors.

There is another important difference between the FLT3/ITD
and BCR-ABL oncoproteins. Inhibition of the downstream signal-
ing of BCR-ABL by an inhibitor such as imatinib mesylate results
in rapid apoptosis of the bulk population of leukemia cells.45 This
addiction of the leukemia cells to the oncoprotein is a signature
feature of the Philadelphia-positive diseases that can be exploited
for clinical benefit. In contrast to this, addiction to FLT3/ITD
signaling is not necessarily a consistent feature of FLT3/ITD AML,
at least according to in vitro studies. Inhibition of FLT3 alone is
insufficient to induce apoptosis in a significant fraction of FLT3/
ITD AML primary samples collected at initial diagnosis.46 How-
ever, samples collected at the inevitable relapse and tested in vitro
are much more likely to undergo apoptosis in response to FLT3
inhibition in comparison to the diagnostic samples.46 The best
predictor for an AML sample to have a cytotoxic response to FLT3
inhibition is a high FLT3/ITD mutant allelic burden. Perhaps not
coincidentally, the FLT3/ITD mutant allelic ratio tends to be
increased at relapse compared with diagnosis (although in a
minority of cases the mutation can be lost altogether).47-49 Relapse,
a higher mutant allelic ratio, and addiction to FLT3/ITD signaling
appear inextricably linked in FLT3/ITD AML.

To summarize, then, FLT3/ITD AML is a disease that appears to
evolve between diagnosis and relapse, with the leukemia cells
becoming more addicted to FLT3 signaling after recurrence after
chemotherapy. Treatment of a patient with chemotherapy leads to
high levels of FL in the plasma throughout the period of recovery
and during consolidation. FL is a cytokine that acts directly on the
mutant FLT3/ITD receptor, maximizing its activity and promoting
the survival of blasts. Although these findings have practical
implications, in that these properties could be used to predict
clinical response and to design treatment regimens, they uncover a
potentially larger issue.

Are we promoting relapse of FLT3/ITD AML with successive
rounds of chemotherapy? If induction regimens de-bulk the BM of
blasts, leaving a residual leukemia stem cell population, do the
recurrent waves of FL that follow select for the emergence of
FLT3-addicted subclones? Patients with FLT3/ITD AML often
relapse during consolidation. It is conceivable, given the above-
mentioned findings, that we could be doing more harm than good
by administering repeat cycles of high-dose cytarabine, or which-
ever consolidation regimen is being used. Indeed, in a recent
randomized trial of induction chemotherapy using more intensive
anthracycline use, patients with FLT3/ITD AML did not appear to
benefit from intensifying therapy, in contrast to patients with FLT3
wild type.50

The clonal evolution of FLT3/ITD AML almost certainly occurs
through � 1 mechanism. The lower allelic burden often seen at
diagnosis may represent simple heterozygosity of the mutation in
an otherwise uniform population of blasts. At relapse, deletion or
point mutations of the wild-type allele, gene conversion, or outright
loss of one copy of chromosome 13 (the chromosome on which the
FLT3 gene is localized) could lead to a hemizygous or homozygous
state.51,52 Increased expression of the mutant allele (or loss of the
wild-type allele) presumably provides a selective advantage,
resulting in expansion of these particular clones. Alternately, the

blast population at diagnosis can be nonuniform, with some cells
completely lacking the FLT3/ITD mutation and others harboring
heterozygous or homozygous mutants.53 The leukemia stem cells
harboring the FLT3/ITD mutation could have a survival advantage
over their wild-type counterparts and emerge at relapse as the
dominant clone. In any of these scenarios, however, the FLT3/ITD
clones are still highly responsive to FL, which could contribute
significantly to their ability to survive successive rounds of
chemotherapy.

The patients who present with low mutant allelic ratio at
diagnosis present an interesting counter-argument to the concept
that FL promotes or influences relapse. Those relatively few
patients with FLT3/ITD AML who have low allelic ratios at
presentation often (but not always) lose the mutation altogether at
relapse.48-49 FL clearly does not select for the expansion of these
apparent subclones. However, patients with low allelic burden
seem to have a prognosis that is similar to that of patients with
AML with wild-type FLT3.34 It is possible that in these cases the
ITD mutation occurred relatively late in leukemogenesis, perhaps
in a leukemia stem cell with lower long-term renewal potential.

The hypothesis that FL promotes relapse of FLT3/ITD AML is,
in at least some ways, a testable one. In patients with newly
diagnosed FLT3/ITD AML undergoing induction and consolidation
there is significant interpatient variability in the degree to which FL
rises from baseline.41 We might predict that relapses will be more
likely to occur, and will occur earlier, in patients with high FL
levels compared with low FL levels. The hypothesis could be
refuted by finding no effect of FL on relapse risk or by finding that
high levels actually predict for better outcomes. In fact, high FL
levels after chemotherapy could be a surrogate for the intensity of
aplasia, which from a traditional perspective is thought to be
beneficial. We are prospectively examining this issue by serial
measurements of FL levels during induction and consolidation in
patients with FLT3/ITD AML, both at our own institution and in
collaboration with ongoing cooperative group trials.

Many advocate the use of allogeneic transplantation as the most
effective consolidation for FLT3/ITD AML.54,55 This is an issue
that remains quite controversial.56-60 Certainly, there are numerous
variables that could have influenced the outcomes of trials involv-
ing allogeneic transplantation (any one of which could cloud the
interpretation of the results), including time to transplantation,
preparative regimens, transplantation-related mortality, and graft-
versus-host prophylaxis. However, if FL levels do contribute to
relapse, and if the “graft-versus-leukemia” effect is a real one, then
the best approach for the patient would be to proceed as rapidly as
possible to allogeneic transplantation once remission is achieved.
Allogeneic transplantation, of course, also involves chemotherapy,
usually more intensive than a single course of consolidation.
However, in substitution for 4 cycles of high-dose cytarabine, it
probably results in a less prolonged overall elevation of FL
(although this should be confirmed prospectively), and it also
introduces a different type of therapeutic effect, that of immuno-
therapy. At our institution, where we have aggressively pursued
allogeneic transplantation for these patients in first remission, the
survival for patients with FLT3/ITD AML is equivalent to non–
FLT3-mutated AML.55 Intriguingly, in a recent report from the
AML Study Group in Ulm, Germany, where a similar strategy has
been used since 2006, it was noted that patients with FLT3/ITD
who received a transplant sooner rather than later after achieving
remission had better outcomes.61 Normally, in landmark analyses
of AML transplantation studies, longer time to transplantation is
associated with better outcomes, presumably because patients who
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are well enough for transplantation after several months represent a
generally favorable risk group. However, longer time to transplan-
tation, which would necessitate extra courses of consolidation, was
associated with worse overall survival in their analysis. This is
exactly what would be predicted if those recurrent courses of
consolidation were actually promoting relapse.

On the basis of these findings, it can be proposed that the
optimal therapeutic approach for a patient with FLT3/ITD AML
would be a single course of induction therapy followed as rapidly
as possible by allogeneic transplantation, including the use of
alternative donors (matched unrelated, haploidentical, or cord
blood derived) if necessary. Novel therapeutic agents can be
introduced into this paradigm. FLT3 inhibitors can be used early in
therapy (before the rise in FL levels, before their effectiveness is
limited) to improve remission rate and, if the FL levels return to
baseline, to maintain the patient in remission until transplantation.
FLT3 inhibition could also be used as maintenance therapy after
allogeneic transplantation, as is commonly done with BCR-ABL
inhibitors,62 particularly in light of the mounting anecdotal evi-
dence of activity in this setting.63,64 Finally, consideration could be
given to targeting FL with monoclonal antibodies.

Obviously, it would be far more preferable to avoid allogeneic
transplantation, with its concomitant short- and long-term risks of
morbidity and mortality,65 by curing our patients with a combina-
tion of chemotherapy and FLT3 inhibition. Indeed, this approach
continues to look promising, because preliminary results from large
combination trials appear to show a survival improvement from
this approach (compared with historic controls).66,67 The final
results of these trials, however, may be difficult to interpret in light
of the reported high rates of allogeneic transplantations occurring
in first remission in the enrolled patients.66,67

Great strides have been made in improving the survival of
patients with AML over the past several decades.68 It has been

increasingly recognized that AML is not a single disease, and the
improvements in survival have been brought about as a result of
tailoring therapy according to the molecular features of the disease.
In this case, we may need to tailor the therapy to try to account for
the law of unintended consequences. Even recent medical history is
full of examples of the best intentions gone awry: estrogen therapy
that prevents osteoporosis but causes breast cancer,69 erythropoi-
etin therapy that decreases transfusion requirements but kills
patients with cardiovascular and thromboembolic events,70 and
intensive blood glucose control that results in hypoglycemic
deaths.71 More is not always better, and this may well apply to
chemotherapy and FLT3/ITD AML.
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