
(� 50 at 3 months and � 300 after 3 months) and CMV-specific
T-cell immunodeficiency were strong predictors of late CMV
disease (18%) and death (46%) after allogeneic HCT.13

In summary, the clinical benefit observed in our case with
refractory CMV encephalitis, which is almost always a fatal
condition,14 may offer clinicians a potentially effective treatment
option if CMV-specific T-cell therapy is not available.
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To the editor:

CD9 up-regulation on CD34� cells with ingenol 3,20-dibenzoate does not improve homing in
NSG mice

Leung et al demonstrated the potential importance of the tetraspa-
nin CD91 in regulating migration, adhesion, and homing of human
umbilical cord blood (UCB) CD34� hematopoietic stem and
progenitor cells.2 Using a neutralizing antibody to CD9 they
inhibited marrow and splenic homing of these cells in sublethally
irradiated NOD/SCID mice. They also showed inferior homing of
CD34�CD9� cells compared with total CD34� cells.

Our laboratory has also been interested in defining the role of a
tetraspanin-containing polarized membrane domain in the interac-
tion of primitive hematopoietic cells with osteoblasts, critical
components of the hematopoietic stem cell niche.3 We have
investigated whether increasing expression of tetraspanins such as
CD9 might increase homing in the niche. We and the Leung group
have found that exposure of CD34� cells to a protein kinase C �
agonist, ingenol 3,20-dibenzoate (IDB) can increase CD9 expres-
sion. In our study, in contrast to Leung’s results, we found that

4 hours’ exposure to IDB was insufficient time to increase the
fraction of CD34� cells expressing CD9 expression in either
mobilized peripheral blood (MPB) or cord blood (CB) CD34�

cells. There was also no change in CXCR4 expression in the IDB
versus control cells at 4 hours.

In 3 experiments, we tested whether longer incubation times
with IDB could induce CD9 up-regulation in MPB CD34� cells.
When cells were incubated for 48 hours, the mean fluorescence
intensity (MFI) for CD9 increased on the IDB-treated cells
compared with the untreated cells as shown in a representative
experiment (Figure 1A) and summarized in Figure 1B (P � .009;
n � 3). An increase in CD9 MFI was also observed on IDB-treated
cells after 72 hours in culture and the difference approached
significance compared with the untreated group (P � .094; n � 3;
Figure 1A-B). Expression of other molecules known to be impor-
tant for adhesion and homing, including VLA-4 and CXCR-4
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showed no significant modulation in MFI or fraction of CD34�

cells expressing each molecule after incubation of MPB CD34�

cells for 24 to 72 hours in IDB compared with controls (data not
shown).

To determine whether the increase in CD9 expression would
affect homing, we transplanted NOD/SCID � (NSG) mice with
cultured MPB CD34� cells (1 � 106 cells/mouse, n � 3-5 mice/
group) incubated for 48 and 72 hours with or without IDB in
2 separate experiments using different donors. NIH Animal Care
and Use Committee approval was given. Mice were killed 18 hours
after transplantation, and the homing of human cells to the murine
bone marrow was analyzed by flow cytometry for human CD45�

cells. Compared with MPB CD34� cells cultured without IDB, no
statistically significant improvement in marrow homing was seen
in mice transplanted with cells exposed to IDB for 48 hours
(P � .8; Figure 1C) or 72 hours (P � .97; Figure 1D). In a separate
experiment, no transplanted CD45� cells were detected in blood or
splenic tissue (data not shown).

Despite differences in the density of CD9 per cell, exposure to
IDB did not result in improved homing in NSG mice. This finding
was not because of down-regulation of other surface adhesion
receptors essential for hematopoietic stem cell homing. An up-
regulation of CD9 did not result in cells lodging in splenic tissue
preventing them from reaching the bone marrow. We conclude that
while decreasing the percentage of CD34�CD9� cells inhibits

homing as shown by Leung et al,1 basal cell–surface CD9 density
appears to be sufficient for maximal homing; therefore, CD9
modulation with IDB unfortunately lacks promise for improving
homing and engraftment.
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Figure 1. Incubation of human mobilized peripheral blood (MPB) CD34� cells. Incubation of human mobilized peripheral blood (MPB) CD34� cells for 48 to 72 hours with
IDB up-regulates CD9 expression compared with MPB CD34� cells incubated without IDB, but homing IDB-treated cells in NSG mice is not improved. (A) Flow cytometric
analysis of CD9 expression on human MPB CD34� cells cultured for 48 hours in the absence (left panel) or presence (right panel) of IDB. (B) Summary of the CD9 MFI of
human MPB CD34� cells at baseline and after culture in the presence or absence of IDB for 24, 48, or 72 hours. (C) Summary of homing studies after 48 hours of incubation
with IDB. Human MPB CD34� cells were exposed to IDB for 48 hours before transplantation into NSG mice; cells in the control group were cultured without IDB. In both groups
homing of the human cells to the mouse bone marrow was measured by flow cytometry using human CD45 antibodies 18 hours after transplantation (f, Donor 1; F, donor 2).
(D) Summary of homing studies after 72 hours of incubation with IDB. Human MPB CD34� cells were exposed to IDB for 72 hours before transplantation into NSG mice; cells in
the control group were cultured without IDB. In both groups, homing of the human cells to the mouse bone marrow was measured by flow cytometry using human CD45
antibodies 18 hours after transplantation (f, Donor 1; F, donor 2).
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To the editor:

Fluorescence in situ hybridization confirms the presence of Merkel cell polyomavirus in
chronic lymphocytic leukemia cells

We would like to complement our recently reported data on the
detection of the Merkel cell polyomavirus (MCPyV) in chronic
lymphocytic leukemia (CLL) cells.1 We have shown that MCPyV
could be identified by PCR in highly purified CLL cells of 19 of
70 (27.1%) CLL patients. In 6 cases, a 246 bp deletion in the
helicase region of the large T-antigen (LTAg) of MCPyV was
found. Truncating mutations or deletions in the LTAg of MCPyV
lead to a loss of the helicase activity and thus prevent viral
replication.2 In addition, in 2 of these CLL cases deleted LTAg was
detected concomitant to wild-type MCPyV.

Here we confirm the presence of the MCPyV genome in CLL
cells by using fluorescence in situ hybridization (FISH). MCPyV-
FISH was performed according to a recently published FISH
protocol3 to detect human papilloma virus (HPV) in formalin-fixed
and paraffin-embedded (FFPE) tissue. The MCPyV DNA probe we
used was isolated from a Merkel cell carcinoma (MCC) and
contained a 4 bp deletion creating a stop codon before the helicase
domain. FISH was applied to all 6 FFPE bone marrow trephines

(EDTA decalcified) in which we previously detected the 246 bp
LTAg MCPyV deletion. Three MCPyV DNA-positive MCCs, as
detected by PCR,4 were used as positive controls showing punctate
nuclear signals in MCC indicative for integrated MCPyV in the
tumor cells (Figure 1A). Negative controls included omission of
the MCPyV probe and several MCPyV-negative tissues, that is, a
mantle cell lymphoma and 2 colon carcinomas. None of the
negative controls revealed a FISH signal (Figure 1C). Of the 6 CLL
cases harboring the 246 bp deletion in the MCPyV-LTAg,
4 revealed punctate signals in the nucleus (Figure 1E,G), compa-
rable to those observed in MCC. The observation that nuclei
sometimes show FISH signals differing in intensity (granular
staining pattern) might suggest that in addition to MCPyV-DNA
integration, transcribed viral RNA is also present.3,5 FISH analysis
on the remaining 2 MCPyV-positive CLLs were inconclusive, most
likely because of tissue overfixation and/or poor DNA quality.

In analogy to the punctate nuclear signals observed in anogeni-
tal and oropharyngeal lesions by HPV-FISH3,5 and in MCC by

Figure 1. MCPyV detection by FISH in previously reported MCC and CLL cases.1,4 MCPyV FISH was carried out using tyramide signal amplification (TSA) as described
previously.3,5 Signal evaluation was performed with a Leica DM 5000 B fluorescence microscope (Leica) using 1000� magnification and specific filter sets for Texas red to
visualize MCPyV (A,C,E,G) and DAPI showing blue nuclear counterstaining (B,D,F,H). (A-B) MCPyV detection in MCC and corresponding DAPI (B). (C-D) Negative control on
MCC tissue without probe and corresponding DAPI (D). (E-F) MCPyV detection in CLL cells of a bone marrow trephine and corresponding DAPI (F). (G-H) MCPyV detection in
another CLL case in a bone marrow trephine and corresponding DAPI (H).
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