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Despite improvement in the treatment of
advanced classical Hodgkin lymphoma,
approximately 30% of patients relapse or
die as result of the disease. Current pre-
dictive systems, determined by clinical
and analytical parameters, fail to identify
these high-risk patients accurately. We
took a multistep approach to design a
quantitative reverse-transcription poly-
merase chain reaction assay to be ap-
plied to routine formalin-fixed paraffin-
embedded samples, integrating genes
expressed by the tumor cells and their

microenvironment. The significance of
30 genes chosen on the basis of previ-
ously published data was evaluated in
282 samples (divided into estimation and
validation sets) to build a molecular risk
score to predict failure. Adequate reverse-
transcription polymerase chain reaction
profiles were obtained from 262 of
282 cases (92.9%). Best predictor genes
were integrated into an 11-gene model,
including 4 functional pathways (cell
cycle, apoptosis, macrophage activation,
and interferon regulatory factor 4) able

to identify low- and high-risk patients
with different rates of 5-year failure-free
survival: 74% versus 44.1% in the estima-
tion set (P < .001) and 67.5% versus
45.0% in the validation set (P � .022).
This model can be combined with stage
IV into a final predictive model able to
identify a group of patients with very
bad outcome (5-year failure-free survival
probability, 25.2%). (Blood. 2010;116(8):
e12-e17)

Introduction

Classical Hodgkin lymphoma (cHL) is assumed to be a curable
tumor, but an important fraction of patients with advanced disease
do not respond favorably to the current standard chemotherapy
regimens whose base is adriamycin. The most widely used and
reproducible prognostic score is the product of clinical and
analytical parameters integrated in the International Prognostic
Score (IPS), but it still fails to identify accurately, at the moment of
diagnosis, a significant fraction of patients with very poor progno-
sis.1-3 Thus, the identification of biomarkers that, at diagnosis, may
be consistently associated with nonresponse is essential for the
recognition of patients at high risk of treatment failure to establish a
more rational risk-adapted treatment strategy.

cHL represents a distinctive model of histologic complexity,
with a minor population of the neoplastic Hodgkin and Reed-
Sternberg (HRS) cells diluted in a reactive inflammatory back-
ground composed of nonneoplastic B and T cells, macrophages,

eosinophils, neutrophils, and plasma cells. The complex relation-
ship between the HRS cells and their microenvironment is only
partially understood; however, important, if fragmentary, advances
in our understanding are steadily being made.4 The clinical
outcome of cHL has been found to be related to the expression of
multiple biologic markers alone5-8 or in combination,9 expressed
either by the tumor HRS cells, macrophages, regulatory T cells, or
other nonneoplastic cell subpopulations.10-13

Some of these previous analyses rely on array-based gene
expression analyses, which use frozen tissue and in most cases can
only provide retrospective information. Investigators of other
studies have used immunohistochemical staining, with some
inherent limitations to the reproducibility of the data thus gener-
ated. It is now feasible to apply multigenic predictive molecular
tests in advanced cHL patients in a routine setting by the use of
a quantitative reverse-transcription polymerase chain reaction
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(RT-PCR) assay as we here describe, incorporating a selected
number of genes that capture information from tumor and microen-
vironment cell components, designed for application to routine
formalin-fixed paraffin-embedded (FFPE) samples and that can be
used at the moment of the initial diagnosis.

Methods

Patients and samples

Previous studies allowed us to identify a group of genes whose expression
was associated with the response of patients with advanced cHL to standard
first-line treatment. Thus, the selection of genes to be analyzed was
determined by results previously obtained in 2 independent series of 29 and
52 advanced cHL patients.10,11

The patients included in this study fulfilled stringent, previously
described criteria (ie, age older than 16 years; advanced cHL; Ann Arbor
stage IV, III, or IIB with bulky masses1; proven HIV-negative status) who
have been treated with a first-line standard chemotherapy regimen that
included adriamycin—ABVD (adriamycin, bleomycin, vinblastine, and
dacarbazine) or ABVD variants—and for whom information was available
about the achievement of complete remission (CR) and a follow-up of at
least 12 months thereafter, which is a well-known and accepted surrogate
indication of the course of the disease. With respect to the latter, patients
were considered to have had a favorable course if they had achieved CR and
maintained it for at least 12 months or with an unfavorable course if they
had either not achieved CR or if they had once had it but had relapsed
during the following 12 months. All tissue samples consisted of representa-
tive pretreatment lymph node biopsies collected after revision and approved
by the institutional review board of the participating institutions of the
Spanish Hodgkin Lymphoma Study Group. The study initially included
282 FFPE patients, who were randomly split and assigned to the training
(194 cases) or validation sets (88 cases) on the basis of the minimum
estimated sample size to derive the final model (Table 1).

Additional exclusion criteria were insufficient RNA quality (purity ratio
A260:A230 � 1.7) or a weak RT-PCR signal (average cycle threshold
� 35) for the reference genes or in more than 10 genes of the assay. As a

result, 20 patients were excluded, and the remaining 262 patients (183 in the
training group and 79 in the validation group) meeting these criteria were
included in the statistical analysis (Table 1).

Gene selection

The genes included in the assay initially were selected from 2 preliminary
expression-profiling studies10,11 that rendered a list of genes expressed by
HRS and microenvironment cell subpopulations identified in unfavorable
cHL patients. Selected genes were primarily chosen on the basis of their
prognostic ability and capacity to represent biologic functions identified as
relevant in cHL pathogenesis.11 In addition, the strength and consistency of
primer and probe performance also were taken into account.11 The initial
selection consisted of 30 genes, including genes expressed by the neoplastic
cells involved in the cell cycle (G2/M), apoptosis, histones, chaperones,
drug metabolism, and mitogen-activated protein kinase signatures, and
from microenvironment genes expressed by different cellular or functional
populations of T cells, monocytes, macrophages, and dendritic cells.
Details of the RT-PCR assays are available in supplemental Table 1
(available on the Blood Web site; see the Supplemental Materials link at the
top of the online article).

Analysis of gene expression

Gene expression was analyzed by the use of a customized TaqMan
low-density array platform (Micro Fluidic Cards; Applied Biosystems) on
FFPE as previously described.11,14 A preamplification step (PreAmp;
Applied Biosystems) was used to improve the sensitivity of our assay for
low-abundance target genes available from FFPE samples.15-17 Reactions
were performed by use of the ABI PRISM 7900HT Sequence Detection
system (Applied Biosystems), and we measured the expression of each
gene in triplicate and then normalized it with a set of 2 reference genes
(HMBS and GUSB) whose uniform expression in cHL tumor samples was
tested in previous studies.11 Missing values were imputed using the
K-nearest neighbor algorithm.18

Statistical analysis

Differences in the distributions of standard clinical parameters (age, sex,
stage, IPS, the individual variables contained in IPS, and outcome) in the
estimation and validation datasets were tested by the Pearson �2 test (Table 1).

The first end point of this study was the response to standard first-line
treatment considering favorable response (F) and unfavorable response (U),
as mentioned previously. Data from second-line and salvage therapies
and/or bone-marrow transplantation were not considered.

The selection of the best predictive genes and the logistic regres-
sion model was on the basis only of the data from the training group of
183 patients, without any previous survival analysis that used information
from the validation group. Univariate regression analysis was performed
with treatment response (F vs U) as the dependent variable to identify
genes significantly associated (P � .05) with outcome. In addition, final
gene selection analysis was performed by cross-validation with the use of
3 prediction algorithms (http://tnasas.bioinfo.cnio.es/): diagonal linear
discriminant analysis,19 support vector machines,20 and K-nearest neigh-
bor.21 Cross validation was used to test the classification ability of the initial
set of significant genes to choose the strongest predictor genes, which were
classified into functional groups on the basis of their known biologic
relationship and their coregulated expression as estimated by the Pearson
correlation coefficient. Individual genes from each functional group were
weighted by the use of linear discriminant analysis.22 Finally, these
functional gene clusters associated with cHL outcome were analyzed in a
multivariate logistic regression model with response to therapy (F vs U) as a
dependent variable. In this way, an algorithm was derived that combines
these measurements into a quantitative “molecular risk score” (MRS),
which can be used as a continuous variable to estimate the probability
of treatment response. The MRS cut-off points were prespecified by
the use of an area under the receiver operating characteristic curve (ROC)
analysis to define different risk groups. (See the supplemental Appendix
for details of the statistical analysis and methods.) Finally, performance

Table 1. Clinical characteristics of the cHL series

Characteristic
Estimation,

n (%)
Validation,

n (%)
Total,
n (%) P

Age, y (n � 183) (n � 79) (n � 262)

Younger than 45 133 (72.67) 56 (70.88) 189 (72.14) .883

45 or older 50 (27.32) 23 (29.11) 73 (27.86)

Sex (n � 183) (n � 79) (n � 262)

Male 99 (54.10) 51 (64.55) 150 (57.25) .151

Female 84 (45.90) 28 (35.44) 112 (42.75)

Stage IV (n � 182) (n � 79) (n � 261)

No 132 (72.52) 47 (59.49) 179 .053

Yes 50 (37.87) 32 (40.50) 82

IPS code (n � 182) (n � 79) (n � 261)

Less than 3 109 (59.89) 41 (51.90) 150 (57.47) .288

3 or greater 73 (40.11) 38 (48.10) 111

Outcome (n � 183) (n � 79) (n � 262)

F 132 (72.14) 57 (72.16) 189 (72.14) � .999

U 51 (27.86) 22 (27.84) 73 (27.86)

Clinical characteristics of patients with adequate RT-PCR profiles. Summary
of the clinical characteristics of the patients in the estimation and validation sets
that yielded suitable analyzable data (262 of 282; 92.90%). Differences in distribution
of standard clinical parameters (age, sex, stage, IPS and outcome) between
estimation and validation datasets tested by Pearson chi-square with Yates cor-
rection were not statistically significant (IPS values of 0-2 classified as low IPS; IPS
values � 2 classified as high IPS).

cHL indicates classical Hodgkin lymphoma; F, favorable response; IPS, Interna-
tional Prognostic Score; RT-PCR, reverse transcription polymerase chain reaction;
U, unfavorable response.
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of the logistic regression model was tested in the validation group of
patients (n � 79).

For graphical representation, survival analyses were performed with the
Kaplan-Meier method and long-rank test separately in the training and
validation series and in the entire series. Because the primary objective of
the study was to identify patients at high risk of treatment failure, we used
failure-free survival (FFS) as the fundamental end point for survival
analysis. FFS was defined as the time interval between treatment initiation
and treatment failure or last follow-up. Failure was defined as either the
failure to achieve CR or the occurrence of progressive disease, irrespective
of whether there had been an initial CR. Overall survival (OS), an end point
whose significance is imperfect because it is conditioned by the effect of
subsequent eventual treatments and complication of treatment, was in-
cluded as a secondary end point in the survival analyses, defined as the time
interval between diagnosis and death caused by the lymphoma.

Finally, in the whole series, a multivariate Cox proportional hazards
model, including the data at diagnosis, the IPS stratified as previously
defined (0-2 vs � 3),1 and its 7 individual variables (hemoglobin � 1.5 g/
dL; albumin � 4 g/dL; leukocytosis � 15 000/mm3; lymphopenia � 600/
mm3; age � 45 years; male sex; stage IV), was applied to test the
independence of the MRS, including the remaining significant variables in a
final integrative model.

All statistical analyses were 2-sided; values of P less than .05 were
considered to be significant. These were performed with SPSS 15.0 (SPSS
Inc). Survival curves were assessed by the Kaplan-Meier method, and risk
groups were compared by the log-rank test. Plots were generated with the
use of GraphPad Prism Version 5 (GraphPad Software, Inc).

Results

Gene selection and development of the predictor model

In training series, univariate regression analysis of the expression
data for the 30 initially selected genes revealed 20 genes to
significantly predict failure to first-line treatment (supplemental
Table 3). When cross validation was applied, the genes most
frequently found in prognostic models consisted of a panel of

11 genes that were included in the final model: BCL2, BCL2L1,
CASP3, HMMR, CENPF, CCNA2, CCNE2, CDC2, LYZ, STAT1,
and IRF4.

To derive the model, we took a 2-step approach, first combining
individual gene-expression patterns into precise functional path-
ways and then subsequently correlating these functional groups
with the clinical outcome by using multivariate logistic regression.
Final selected genes were weighted by the use of linear discrimi-
nant analysis and clustered into their corresponding functional
pathways defined as macrophage activation (LYZ, STAT1), cell
cycle (HMMR, CENPF, CCNA2, CCNE2, CDC2), and apoptosis
(BCL2, BCL2L1, CASP3; Figure 1A). The Pearson correlation
coefficient was significant for the genes included in each of the
signatures (P � .001) apart from IRF4, which was included as an
independent predictive gene because there were neither distinct
functional relationships nor statistically significant correlations
with other genes or pathways (supplemental Table 4). These
functional groups captured information about the tumoral HRS
cells and their nontumoral microenvironment, in agreement with
previous studies.10 The multivariate logistic regression analysis
integrating these pathways showed that cell cycle and apoptosis
terms were associated with an unfavorable outcome of patients,
whereas macrophage activation and IRF4 signatures had protec-
tive effects.

Thus, the optimized final model was determined on the basis of
the relative contributions of each of the 4 functional terms, as
described in the following equation: constant (�0.913) �
(0.401 � apoptosis) � (0.284 � cell cycle) � (�0.301 � macro-
phage activation) � (�0.143 � IRF4). The continuous probability
function generated by the logistic regression was defined as the
MRS to treatment failure and ranged from 0.06 to 0.813 (Figure
1B). ROC analysis was used to define a threshold for stratifying
patients, and the largest area under the curve was obtained by the
use of 0.3 as the threshold, thus dividing the series into high-risk
(MRS � 0.3) and low-risk (MRS � 0.3) cases (Figure 1B-C).

Figure 1. Panel of 11 genes and the molecular risk
algorithm. (A) The molecular risk algorithm is deter-
mined on the basis of the relative contributions of each
of the 4 gene functional groups from the tumoral HRS and
their reactive microenvironment as follows: MRS �
exp (fx)/(1 � exp [fx]), where fx � (�0.913) � (0.401 �
apoptosis) � (0.284 � cell cycle) � (�0.301 � mono-
cyte) � (�0.143 � IRF4). Coefficients were derived from
a multivariate analysis in which positive values indicate
that a greater level of expression is correlated with a
worse outcome, and negative coefficients indicate that a
greater level of expression of the pathways is associated
with a better outcome. (B) MRS as a continuous function
was used to set a threshold for stratifying patients by
ROC analysis. Patients were stratified according to the
levels of the molecular risk score into low-risk (� 0.3) and
high-risk (� 0.3) groups. (C-D) Survival estimates of FFS
in patients from estimation (n � 183) and validation
(n � 79) sets after classification into risk groups. Kaplan-
Meier analysis and the log-rank test gave significant
results in both estimation and validation sets, indicating
the potential prognostic capacity of the algorithm devel-
oped here.
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Validation of the MRS

The MRS differed significantly between the various outcome
groups (supplemental Figure 2) and predicted treatment response
with an accuracy of 68.9% in the estimation dataset and 70% in the
validation dataset. Because treatment failure was the main end
point used to derive the logistic regression function, FFS as previ-
ously defined, was used for validation of the model and Kaplan-
Meier analysis of survival. Predicted probabilities also identified
2 risk groups associated with FFS in both the estimation and
validation sets (Figure 1C; supplemental Figure 3). FFS probabili-
ties at 5 years were 74.0% versus 44.1% (P � .001) in the training
set and 67.5% versus 45.0% (P � .022) in the validation set.

In addition, the analyses of OS showed different risk groups
identified by the MRS in the estimation group of patients. The
differences were not significant in the validation series, probably
because of the limited number of events (supplemental Figure 3).

There were no significant statistical differences in the MRS
distributions of the 2 histologic subtypes, nodular sclerosis and
mixed-cellularity cHL (P � .186, t test), and the differences in
survival between risk groups identified by the MRS remained
significant in both the estimation and validation sets stratified by
histologic subtype (supplemental Figure 4).

Integrative model using MRS and clinical variables

In the whole series, a multivariate Cox proportional hazards model
with FFS as the dependent variable and including the MRS and the
IPS, we found that only the MRS was significant (Table 2). No
interaction was observed between the IPS or the individual IPS
variables and the MRS low- and high-risk groups (supplemental
Table 5). Thus, to compare the molecular risk algorithm and the
individual IPS components, a backward stepwise selection Cox
model was tested, with FFS as the dependent variable and
including the MRS and the individual components of the IPS in the
global series of samples. Only MRS and stage IV were statistically
significant (Table 2) and so were retained in the final Cox
regression model. Patient stratification into quartiles on the basis of
the Cox model identified a subgroup of advanced cHL patients

(fourth quartile) with a very poor outcome: 5-year FFS of 24.3%
(P � .001; Figure 2).

Discussion

Here we describe, in a series of patients with advanced cHL, a
4-cluster/11-gene model derived from an initial selection of
30 potentially predictive markers that can be detected by RT-PCR
and integrated into a molecular risk algorithm that can identify
patient subgroups with very different probabilities of treatment
failure. This approach is determined on the basis of reliable
quantitative RT-PCR techniques applicable to paraffin-embedded
diagnostic samples and follows similar approaches taken in breast
cancer and other tumor types.23,24 This benefits from previous
expression profiling studies performed in cHL,10 and the improved
knowledge about the role of the tumoral cell and the microenviron-
ment in the pathogenesis and outcome of this disease.13,25,26 This
MRS, calculated in an initial estimation set, was confirmed in an
independent set. Genes included in the score were selected on the
basis of previous gene expression profiling data generated in
independent sets of patients11,27 and can be classified in 4 functional
pathways.

The final 4-cluster/11-gene model can additionally incorporate
one of the well-established clinical variables (stage IV), thus
integrating the main molecular characteristics of the tumors related
with treatment response and tumor burden estimation in a single
scoring system. The multivariate Cox model indicates that most
patients with stage IV cHL and with a high MRS (� 0.3) will have
a very poor outcome, with 5-year FFS probability of 24.3% and
OS probability of 76.3%. Therefore, this combination of stage IV
and high MRS identifies a group of patients with very bad outcome
who could have been initially missed by consideration of the
IPS alone.1,3

It is of note that in the present series the IPS did not show any
significant prognostic influence on FFS. From the individual
components of the IPS, only stage IV disease remained significant
in multivariate analyses. This finding is in agreement with recent
studies in which the authors demonstrated that IPS is of limited
utility in advanced HL cases treated in the modern era, where more

Table 2. MRS and the IPS variables

P Hazard ratio (95% CI)

IPS and MRS (n � 262)*

MRS � .001§ 24.362 (6.268-94.691)

IPS .205 1.111 (0.944-1.309)

IPS variables and MRS (n � 262)†

MRS � .001§ 24.715 (6.804-89.768)

Hemoglobin � 10.5 g/dL .352 1.243 (0.787-1.963)

Albumin � 4 g/dL .504 1.157 (0.755-1.772)

Leucocytosis � 15 000/mm3 .256 1.312 (0.821-2.095)

Lymphopenia � 600/mm3 .555 0.820 (0.425-1.583)

Age � 45 y .369 1.227 (0.785-1.916)

Stage IV .041§ 1.552 (1.018-2.360)

Male sex .753 0.936 (0.618-1.416)

PT-BR Integrative Cox model (n � 262)‡

MRS � .001§ 23.782 (6.041-94.340)

Stage IV .025§ 1.409 (1.044-1.900)

95% CI indicates 95% confidence interval; IPS, International Prognostic Score;
and MRS, molecular risk score.

*Multivariate Cox regression analysis considering MRS and the IPS.
†Univariate Cox regression analyses considering individual IPS variables and

MRS.
‡Cox regression analysis of the final variables included in the integrative model

(molecular risk plus stage IV) obtained by backward stepwise selection.
§Significant.

Figure 2. Integrative risk model of cHL. The final Cox model integrates the MRS
and clinical variable stage IV. Patients in quartiles 1, 2, and 3 have comparable FFS
rates at 5 years (76.4%, 79.3%, and 69.7%, respectively) whereas patients in quartile
4 show a 5-year FFS of 24.3% (P � .001).
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accurate pathologic diagnosis, improved control of therapy, use of
growth factors, and enhanced supportive care are yielding better
outcomes compared with historic results.3 Thus, deviations from
the standard therapy cannot be justified on the basis of the survival
prediction capacity of the IPS, and identification of high-risk
populations needs to be supplemented with molecular markers.

In the model, the expression of BCL2, BCL2L1, CASP3,
HMMR, CENPF, CCNA2, CCNE2, and CDC2 included in the
apoptosis and cell-cycle pathways, respectively, were correlated
with short FFS. The expression of various antiapoptotic BCL2
family proteins has been repeatedly reported in HRS cells,7,28,29

thereby contributing to the survival of HRS cells. BCL2 and
BCL2L1 (BCL-XL) both frequently are expressed by HRS cells in
cHL, and their levels have been associated with inferior FFS in
patients treated with ABVD or equivalent regimens,5 thus con-
firming the importance of this group of apoptotic regulators for
cHL outcome prediction. The second signature, cell cycle, is
mainly composed of genes coding for regulatory proteins of
the S and G2/M phases of the cell cycle, thus directly related with
cell proliferation. Again, expression of some of these markers has
been previously described at the protein level in cHL,7,30,31 and a
significant prognostic value for CDC2 (CDK1) and CCNA2 (cyclin
A2) protein expression in non-Hodgkin lymphomas was also
found for both disease-free survival and OS. Interestingly, this
aberrant association between increased expressions of antiapop-
totic proteins and growth fraction-associated proteins in HRS
cells provides further evidence that cell cycle and apoptosis
regulation are profoundly disturbed and closely related in the
disease, further justifying the inclusion of these 2 pathways in
the predictive model.

Moreover, pathways involved in cell cycle and apoptosis
regulation are rational therapeutic targets. Indeed, inhibitors of
Cyclin-Cdk complexes (including Cyclin E-Cdk2, Cyclin A-Cdk2,
and Cyclin B-Cdk1 complexes) are currently under preclinical and
clinical investigation in different cancer types,32-34 and these drugs
could be considered for the treatment of advanced and refractory
cHL patients. Likewise, the potential for targeting BCL2-related
proteins in lymphoma is promising. Small molecule inhibitors of
the Bcl-2 family have demonstrated high target affinity and an
improved toxicity profile, and clinical trials of these agents are
yielding interesting results.35

Confirming previous observations about the importance of the
reactive microenvironment for cHL patient outcome,9,11,12 LYZ and
STAT1 genes, expressed at high levels in a subset of tissue
monocytes and activated macrophages, also are included in this
model, and correlated with prolonged FFS and better outcome. The
relevance of the cell composition of the reactive background in
cHL has been reinforced by the data recently reported by Steidl et
al.36 They used gene expression profiling to identify a gene
signature of tumor-associated macrophages that is associated with
treatment failure, in an approach methodologically similar to
previous reports from our group and others.10,37 The discrepancy in
the results concerning the role of macrophages may have arisen
from technical differences (RT-PCR vs microarray gene-expression
and immunohistochemistry) or the selection of markers such as
LYZ and STAT1 in this study, reflecting a specific functional status
of the monocyte-macrophages.38

In addition, IRF4 (MUM1) expression was associated with
longer FFS. This gene is an interferon regulatory factor, lympho-
cyte specific, induced after nuclear factor-	B (NF-	B) activation,
which controls B-cell proliferation and differentiation and has

recently been shown to be up-modulated by CD40 engagement
in HL cells.39 Interestingly, the lack of IRF4 protein has been
previously associated with outcome in cHL,40 representing a
potential adverse prognostic factor. In addition, both IRF4 and
BCL2L1 represent well-known NF-	B target genes41,42 whose
expression is induced after NF-	B pathway activation. Thus, our
final model includes important subrogates from the NF-	B activa-
tion, which is thought to be an essential pathogenetic mechanism in
this disease. It is of note that Bednarski et al43 recently described
how the inhibition of the canonical NF-	B pathway enhances the
proapoptotic effects of adriamycin, thus also identifying NF-	B
inhibition as an interesting therapeutic approach.

In conclusion, we have developed a molecular risk algorithm,
on the basis of feasible and reproducible molecular techniques, that
is capable of stratifying at the moment of diagnosis advanced cHL
patients with different outcome. Moreover, a combination of this
algorithm with the presence of clinical stage IV disease can be used
to identify a group of cHL patients with a very bad outcome who
could benefit from more intensive therapeutic approaches.

These results are promising, but further validation in larger and
independent series of patient is needed for the model to become
established as part of the clinical routine. Also the predictive value
of this model should also be tested in patients treated with modern
intensive chemotherapy.
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