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The identification of transcriptional regu-
latory networks, which control tissue-
specific development and function, is of
central importance to the understanding
of lymphocyte biology. To decipher tran-
scriptional networks in T-cell develop-
ment and differentiation we developed a
browsable expression atlas and applied a
novel quantitative method to define gene
sets most specific to each of the repre-
sented cell subsets and tissues. Using
this system, body atlas size datasets can
be used to examine gene enrichment pro-

files from a cell/tissue perspective rather
than gene perspective, thereby identify-
ing highly enriched genes within a cell
type, which are often key to cellular differ-
entiation and function. A systems analy-
sis of transcriptional regulators within
T cells during different phases of develop-
ment and differentiation resulted in the
identification of known key regulators
and uncharacterized coexpressed regula-
tors. ZBTB25, a BTB-POZ family transcrip-
tion factor, was identified as a highly
T cell–enriched transcription factor. We

provide evidence that ZBTB25 functions
as a negative regulator of nuclear factor
of activated T cells (NF-AT) activation,
such that RNA interference mediated
knockdown resulted in enhanced activa-
tion of target genes. Together, these find-
ings suggest a novel mechanism for
NF-AT mediated gene expression and
the compendium of expression data pro-
vides a quantitative platform to drive
exploration of gene expression across a
wide range of cell/tissue types. (Blood.
2010;115(26):5376-5384)

Introduction

T cells undergo thymic development and differentiate into distinct
subsets defined by cytokine production and effector functions. This
development depends upon Notch and Wnt signaling pathways and
transcription factors including GATA3, MYB, RUNX1, IKZF1, and
TCF7 (for review see Rothenberg et al1 and Singer et al2). In
contrast to B cells, where PAX5 and EBF1 were identified as
B-lineage specific in expression and function, many of the known
T-cell regulators are not restricted to the T lineage.1 In addition,
several factors that have critical roles in T-cell development, such
as, MYB, GFI1, STAT5B, TOX, and POU2F1 are stably expressed
throughout development.3 These observations lead several investi-
gators to hypothesize that T lineage–specific factors remain to be
discovered, and several studies have attempted to identify these
novel Transcription factors (TFs).4-6 However, these studies fo-
cused on changes between different T-cell subsets or between
T cells and a few limited numbers of non–T-cell controls. Given
that transcriptional steady state abundance is best quantified with
respect to other cells, we hypothesized that T cell–specific factors
will emerge only in an extensive dataset that includes a large
number of immune and nonimmune cells and tissues.

We compiled a large dataset of 557 publicly available microar-
rays that covers 126 normal primary cells/tissues and reveals
expression patterns of approximately 12 000 genes. A novel bench-
marking system was devised that enhances the signal to noise ratio
and is a measure of cell/tissue specificity. This scoring system is

comparable between genes and allows ranking in each cell/tissue
profiled based on specificity level. We used this compendium to
study the transcriptional control of T-cell development and differen-
tiation. A systems level analysis of 1373 TFs recovered many of the
known T-lineage regulators and identified several potentially novel
factors. We identify several potentially novel regulators and
validate ZBTB25, BTB-POZ family member, functions as a tran-
scriptional repressor of nuclear factor of activated cells (NF-AT) in
T cells. We demonstrate that silencing of ZBTB25 results in
enhanced expression of NF-AT target genes in response to T-cell
receptor (TCR) engagement. In addition, we demonstrate the
ability to expand this dataset further by including profiled cell lines
and identify genes enriched in hematologic malignancies compared
with normal tissues and other cancers.

Methods

Microarrays and the enrichment score

The Gene Expression Omnibus7 and ArrayExpress8 collections were
scanned for experiments in which normal primary human cells or tissues
were profiled. Experiments that were performed on Affymetrix platforms
for which the raw files were available were selected and grouped by
platform accession numbers. Raw Affymetrix files were processed using R
Version 2.6.2 (The R Foundation for Statistical Computing) and Bioconduc-
tor modules Version 2.1.9 Microarray normalization was performed using
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the GCRMA module and present/absent calls were calculated using
Affymetrix MAS5 package in Bioconductor. For the purpose of computing
the enrichment scores, only probes with at least 1 present call across the
entire dataset for which the expression value was above log2(100) were
retained. We refer to each set of replicates representing a cell type or tissue
as a group. Each group was compared pairwise to all other groups using the
Limma module of Bioconductor.10 Limma uses linear models and Bayes
methods to assess differential expression. For each group we used Limma
and compared that group to each of the other 125 groups in the panel,
generating 125 linear model coefficients for each probe and 125 associated
P values. P values were adjusted using the Bonferroni correction. The linear
model coefficient is a measure of difference between 2 groups. The
enrichment score for each probe was defined as the sum of all linear model
coefficients for which the adjusted P values were less than .05. This process
is illustrated in supplemental Figure 1 (available on the Blood Web site; see
the Supplemental Materials link at the top of the online article) and a heat
map of linear model coefficients for transcription factors in embryonic stem
cells is shown in Figure 1A. Probes highly expressed in only 1 group within
the panel will result in very high enrichment scores due to the sum of large
statistically significant coefficient.

Probe mapping

Affymetrix individual probes in each probe set were matched to the human
genome (HG18) using Blast-like alignment tool with a tile size of 5. Probes
were allowed to have a maximum of 2 mismatches with no gaps. Probes
were mapped to exons of annotated transcript of known genes for which a
National Center of Biotechnology Information GeneID exists. Only probe
sets in which at least half of the individual probes matched an exon were
accepted. Mapping results for each probe are available on the Enrichment-
Profiler Web page.

Methods describing transcription factor binding site prediction, plas-
mids, antibodies, compilation of gene lists, reporter assays, RNAi, knock-
down studies and associated references are available in the supplemental
Methods.

Results

The Gene Expression Omnibus,7 ArrayExpress,8 and the scientific
literature were text-mined for experiments in which normal pri-
mary human cells and tissues were profiled on single channel
Affymetrix platforms. Experiments for which raw Affymetrix CEL
files were available were grouped by microchip identification
number. Affymetrix U133A platform was used here but this
approach can be applied to other platforms. When cells obtained
from a single subject were not available, experiments where
multiple subjects were pooled were used. This typically occurs
when a very specific population of cells is sorted and multiple
individuals are required to obtain enough cells for profiling. In such
cases, some genes vary in expression levels between subjects;
however, our goal was to identify genes with high tissue specificity,
such as transcription factors that define cell state or genes that have
a key functional role in a specific cell type. Overall, 557 arrays of
normal (non-disease state) primary cell types/tissues that represent
126 cell types/tissues were compiled (supplemental Table 1). This
collection of arrays was processed, normalized and filtered as a
single experiment (see “Microarrays and the enrichment score”).

To quantify the level of gene enrichment per cell/tissue,
individual arrays within each group were treated as replicates. In
such a large dataset, every gene is differentially expressed to some
extent, thus we devised a novel benchmarking system which scores
each probe in 1 tissue relative to all other tissues. The bioconductor
linear models for microarray data (LIMMA) module was used to
compare each group pairwise to each of the other 125 groups.10

This analysis resulted in 125 linear model coefficients per probe for
each tissue and is illustrated in supplemental Figure 1. The linear
model coefficient is a measure of difference between 2 groups.
Larger differences result in higher coefficient values and are
typically associated with more significant P values. We defined an
enrichment score for each probe as the sum of all coefficients that
were statistically significant (Bonferroni corrected P � .05). To
illustrate this scoring system, the coefficient matrix of TFs in
embryonic stem (ES) cells is shown as a heat map in Figure 1. Each
row contains 125 coefficients that typically range from �10
(green) to �10 (red). The rows are sorted by their sum from high to
low. POU5F1 (OCT4), NANOG, LIN28, and SOX2 are the top 4
scoring TFs in ES cells and were previously shown to be sufficient
to reprogram human somatic cells into ES cells.11 The coefficients
for these TFs are high across the entire row implying that their
expression levels in ES cells were significantly higher compared
with any other tissues present in the panel. Therefore, the sum of
these coefficients resulted in a very high score that reflects their
level of specificity. Here, we refer to this score as an enrichment
score. One important attribute of this scoring system is that the
actual enrichment score is comparable between genes and within
each gene. To demonstrate the difference between enrichment
scores and expression levels, mean expression values, z-scores and
enrichment scores for GAPDH and TBX21 are shown in Figure 1B.
GAPDH is expressed at very high levels in all cells profiled here,
while TBX21, a known regulator of Th1 cells, is highly expressed in
a subset of lymphocytes. Because the enrichment score is a result of
a statistical analysis, it provides an improved signal/noise ratio
compared with mean expression levels or a z-score transformation,
which are commonly used. The z-score indicates the number of
standard deviations above/below the mean, however, it does not
take into account the variability within each group (depicted by
vertical black lines). This is best illustrated by the sharp drop in the
enrichment score observed for TBX21 in whole blood due to the
large standard deviation within this group, which is not reflected in
the z-score. In addition, the enrichment score, unlike the z-score, is
comparable between genes. Using a distribution of the highest
enrichment score for each probe the degree of specificity can be
estimated. For instance, only 10% of the genes score above 869
(90th percentile), indicating that the TBX21 enrichment observed in
NK CD56� T cells is in fact high, while the highest enrichment
score of 163 observed for GAPDH is low. In Figure 2 the
enrichment profiles of FOXP3, POU5F1, PHF7, and ATF5 are
shown. FOXP3 and POU5F1 are known to determine cell fate in
regulatory T cells (Tregs)12 and ES cells,13 respectively, and PHF7
and ATF5 have been shown to have important functional roles in
testes14 and liver,15 respectively. These TFs have very high
enrichment scores in these cells. Throughout the figures we use a
color-coding scheme that reflects the quantile of the score as shown
in Figure 2.

Because transcriptional regulators are primary lineage determin-
ing factors in cellular differentiation, our next goal was to identify
TFs that govern T-cell development and differentiation. In the next
section, we harness the power of this dataset to the discovery of TFs
and genes that play a role in T-cell development and differentiation.
We demonstrate the ability to recover known genes, indicate
potential novel genes and validate a novel regulator in T cells.

T-cell development and differentiation

T cells develop from pluripotent precursors that migrate to the
thymus where they proliferate, develop and differentiate (for
review see Rothenberg et al1 and Singer et al2). The dataset
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presented here, although not complete, includes several developmen-
tal stages. Due to the properties of the enrichment score, TFs
relevant to thymocyte development can be identified by applying
simple filters. First, a distribution of the highest score per probe in
thymocyte development was calculated and the 99th percentile of
that distribution was used as a cutoff. This filter identifies the most
highly enriched genes, including those that do not change across
development. BCL11B is a transcription factor in this category,
which maintained very high enrichment scores across all develop-
ment stages. BCL11B is a C2H2-type zinc finger TF which was
previously shown essential for thymocyte development16 (Figure
3A). Next, we selected the top scoring 2.5% genes in thymocyte
development and filtered those for genes with the largest change
(85th percentile of maximum-minimum) across development. We
identified 16 TFs that matched these criteria (Figure 3A and
supplemental Figure 2). Importantly, gene deletion of fourteen TFs
were previously shown to result in T-cell developmental pheno-
types confirming that the expression analysis is capable of recover-
ing genes important for transcriptional control of T cells with high
precision (supplemental Table 2).

We next examined whether some TFs that do not change in
expression levels could still be detected by identifying expression
changes in their target genes. A similar selection process as we
described for TFs was applied to all genes for which a reliable
probe was available (see “Probe mapping”). Genes enriched above
the 98th percentile in a specific developmental stage were selected
and those that had a range larger than the median were clustered
using k-means into forty groups (supplemental Figure 3). Several
groups with patterns of interest that included at least 10 probes
were further tested for enrichment of transcription factor binding
sites in their proximal promoters (see supplemental Methods). Each
of these groups was compared with 1000 random backgrounds that
were used to obtain a distribution and transcription factor binding
sites were ranked by z-score (standard deviation units from the

mean). Results for 3 clusters are shown in Figure 3B and C. Genes
up-regulated in early development were enriched for STAT5A and
STAT5B binding sites. Genes that were low initially in the CD34�

stages but high in the single positives were enriched for ETS1,
RUNX3 and RUNX1; and genes enriched in CD8� cells were
enriched for MYB. Although some TFs are known to be essential, in
many cases the role they play in thymocyte development remains
unknown. Identifying enrichment of their targets in a specific group
of genes could suggest additional clues to developmental stage
specific transcription. RUNX3, for instance, is known to play a role
in differentiation toward CD8� lineage commitment, which is
consistent with the enrichment findings. Similarly to the TF
analysis, enrichment profiles of all genes was performed and
resulted in identification of known and novel genes that may play a
role in differentiation. For instance, in the CD8� SP, PLEKHF1 and
the chemokine XCL2 were among the highest scoring genes based
on the enrichment scoring scheme. PLEKFH1 has been previously
reported as a glucocorticoid responsive gene in neuronal cells and
therefore study of its biologic role in CD8� T cells may offer
insights into the immunodulatory targets of steroids in CD8� T-cell
responses. XCL2 is a chemokine that is predominantly expressed in
activated T cells and was shown to induce chemotaxis in cells that
express the XCR1 chemokine receptor.17 XCL2 was not previously
implicated in thymocyte development or lineage commitment and
may warrant further study. These results demonstrate the feasibility
for genome scale datasets when combined with cell specific
enrichment to infer functional connections in T-cell development.

The same strategy outlined above to T-cell development was
applied to T-cell differentiation. Naive CD4� T cells differentiate
into distinct Th subsets, namely Th1, Th2, Tregs and Th17, that are
defined by distinct cytokine production and effector functions. Our
dataset includes expression profiles for Th1, Th2 and Tregs. To
identify key regulators in Th1, Th2 and Tregs, we initially selected
TFs that were enriched above the 98th percentile in at least 1 of the

Figure 1. Attributes of the enrichment score. (A) A heatmap
representation of LIMMA linear coefficients for ES cells. The
heatmap depicts linear coefficients derived from a pairwise
comparison of expression values in ES cells and every other cell
type/tissue in the panel. For illustration purposes only transcrip-
tion factors are shown, are sorted vertically by the enrichment
score (sum of coefficients in each row). (B) Expression values
(black) and their standard deviation (black vertical lines), z-scores
(red) and enrichment scores (yellow) for TBX21 and GAPDH. For
illustration purposes only the top 10 and bottom 10 expressing
tissues are shown. The left y-axis indicates expression values on
log2 scale and z-score values. The right blue y-axis indicates
enrichment scores. A distribution of enrichment scores was ob-
tained from the highest score for each probe on the array and the
percentiles of that distribution are shown in blue dotted lines.

5378 BENITA et al BLOOD, 1 JULY 2010 � VOLUME 115, NUMBER 26

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/115/26/5376/1297360/zh802610005376.pdf by guest on 02 June 2024



4 cell types. Forty-two TFs were identified and clustered to 20
groups using K-means (supplemental Figure 4). The enrichment
profiles of TFs in Th1 and Th2 cells were remarkably similar with
several TFs enriched in both compared with the naive CD4� and
Tregs, including IRF4, VDR and ETS1 (supplemental Figure 5A).
TBX21 and BHLHB2 were enriched in Th1 compared with Th2
cells while GATA3, CREM, BATF3, and WHSC1 were highly
enriched in Th2. FOXP3 and PBXIP1 were enriched in Tregs and
had similar profiles. FOXP3, TBX21, and GATA3 are hallmark TFs
of Tregs, Th1, and Th2, respectively,12,18,19 and all 3 were identified
by this analysis. In addition, principal component analysis con-
firmed that Th1 and Th2 were clustered close to one another and
further from all other cells, suggesting their TF profiles are similar
and unlike other T cells in the panel (supplemental Figure 5B).
These expression maps illustrate a broader role for molecular
similarities among transcription factors in T-cell differentiation.

Genes specific to T cells

Given the high resolution of T cells in our dataset, we were
interested in identifying TFs that are restricted to T cells, but not to
a specific T-cell subset. To identify such TFs, the sum of enrich-
ment scores in all T cells was calculated and the top 2.5% of that
distribution was selected (Figure 4A-B). BCL11B, LEF1, and
GATA3 were the top ranking TFs in T cells, although BCL11B is the
only TF that appears to be T-cell specific with respect to the cells
and tissues in our dataset. We confirmed this observation by
reverse-transcription–polymerase chain reaction (RT-PCR) in CD4�,

CD8�, CD4�CD25� T cells, CD19� B cells, and CD14� mono-
cytes (supplemental Figure 6). While these samples were obtained
from pooled subjects, BCL11B expression levels in T cells were
100-fold higher than B cells and monocytes. Mice deficient in
BCL11B were shown to have a disorganized thymic cortex and
medulla and defects in thymocyte development.20 LEF1 and
GATA3 are well-characterized TFs that have been shown key to
T cells,21 however, they are not limited to the T lineage. ZBTB25 is
one of the TFs that scored highly in T cells and was low elsewhere
(Figure 4C). ZBTB25 belongs to the BTB/POZ-ZF transcription
factor family with 60 such genes encoded in the human genome,
characterized by an N-terminal POZ/BTB domain and carboxyl
terminus DNA binding zinc finger motifs. Crucial roles have been
revealed for several vertebrate POZ-ZF proteins including specifi-
cation of CD4� versus CD8� lineage decisions by ZBTB7B
(Th-POK) as well as germinal center formation by BCL6.22,23 A
heatmap of gene enrichment profiles of POZ-ZF genes present on
the U133A platform is shown in supplemental Figure 7. Such
enrichment or expression maps could easily be generated for any
given gene list using the EnrichmentProfiler Web interface.

To investigate the potential function(s) of ZBTB25, a functional
shRNA approach was used. Stable Jurkat E-6 knockdown cell lines
were generated using 5 lentiviral shRNAs against ZBTB25, to
identify the most effective targeting sequence. By examining the
knockdown efficiency of endogenous ZBTB25 of each stable cell
line by RT-PCR, 3 stable cell lines were chosen for further
experiments: the PLK0.1 cell line, which was generated using

Figure 2. Enrichment profiles of the top 10 tissues for 4 transcription factors. POU5F1, FOXP3, PHF7, and ATF5 are known for their role in embryonic stem cells (ES
cells), T regulatory cells, testes, and liver, respectively. Bars are color-coded for the enrichment score relative to the distribution of highest and lowest score per gene. The
values in the color scheme on top represent the percentiles of these distributions.
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empty PLK0.1 vector containing no shRNA insert; the shRNA C12
cell line, which is the best knockdown cell line among the
5 ZBTB25 knockdown cell lines tested; and the shRNA D3 cell line,
which did not appear to exhibit significant knockdown of ZBTB25,
and thus served as a negative control to exclude off-target effects
(supplemental Figure 8). To determine potential pathways that
ZBTB25 might regulate in T cells, we determined the effect of
ZBTB25 knockdown using a series of pathway reporters including
NF-AT–luciferase and AP-1–luciferase representing the luciferase
gene under the control of multimerized binding elements. ZBTB25

knockdown significantly enhanced T-cell receptor–mediated NF-AT
reporter activity compared with the empty vector and shRNA (D3)
controls (Figure 4D). In contrast, there was no significant differ-
ence observed in AP-1 reporter activity among these 3 cell lines
after PMA/anti-CD28 costimulation (supplemental Figure 8B). To
further examine the role of ZBTB25 in NF-AT signaling, we next
measured the expression levels of several NF-AT target genes by
RT-PCR after TCR stimulation in the context of ZBTB25 knock-
down. IL2 mRNA expression levels were used to confirm NF-AT
activity. Comparing activation among the 3 different cell lines after

Figure 3. Transcription factors in T-cell development. (A) Enrichment profiles of 6 selected TFs across T-cell development stages (see supplemental Figure 2 for all TFs).
These TFs score above the 97.5th percentile (indicated by a horizontal dashed line) in at least one development stage and their change across the development is larger than
the 85th percentile. (B) All genes scoring above the 97.5th percentile that change across development above the 85th percentile were clustered to 40 clusters using K-means.
Here 3 representing clusters are shown (see supplemental Figure 3 for all clusters). (C) Transcription factor binding site analysis results for each of the 3 clusters shown in
panel B. Position weight matrices are ranked by z-score and only the top 10 results in each are shown.
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anti-CD3/CD28 costimulation, we found that ZBTB25 knockdown
resulted in further induction of NF-AT targets IL2, CD25, and
GPR18 (Figure 4E). In contrast, EGR1, which has been shown not
to be a target of NF-AT,24 was not modulated by ZBTB25
knockdown after anti-CD3/CD28 costimulation. Taken together,
these data strongly indicate that ZBTB25 knockdown augments
TCR-mediated NF-AT signaling, consistent with ZBTB25 possess-
ing a novel NF-AT transcriptional repressor activity.

Genes enriched in hematologic cancers

We next tested the application performance of EnrichmentProfiler
as a resource for gene discovery in hematologic malignancies.
Genome-wide transcriptional profiling of human tumors on microar-
rays has been used extensively over the past few years to address
biologic questions, primarily questions of classification or identifi-
cation of gene sets differentially expressed between 2 different
conditions.25-27 However, for many cancers the preferred control,
typically the cell of origin, is either unknown or difficult to obtain.
Using the enrichment score presented here cancer cell–expressed
genes can be profiled with respect to all other cell types and tissues
in the dataset without the need of a specific control. To test this
hypothesis, the primary cell dataset was extended to include the
NCI-60 collection of tumor profiles, which is available on the
U133A platform. Of the 98 available NCI-60 microarrays, 5 tumors
for which there were no replicates were removed and the rest were
classified into 15 types of cancer (supplemental Table 3). The entire
dataset containing 649 arrays of cancer and primary cells/tissues
was normalized and filtered as described in “Microarrays and the
enrichment score.”

In Figure 5A, the top 15 scoring genes in B-cell lymphoma are
shown. Previous studies have verified that top ranked genes are
involved in B-cell lymphoma. A few examples include MS4A1

(CD20) as a marker for follicular B-cell non-Hodgkin lymphoma28;
TCL1A, which promotes multiple classes of B-cell lymphomas in a
transgenic mouse model,29 and POU2AF1, for which it was shown
that the TCL1A transgenic mice no longer developed B-cell
lymphoma when crossed with B-cell POU2AF1 deficient mice.30

CD27 is a receptor for CD70 which was shown to induce FOXP3
and develop intratumoral Tregs in B-cell lymphoma.31 Interest-
ingly, the primary cell dataset profile of CD70 was slightly enriched
in Tregs. This enrichment was abolished in the cancer dataset due
to a very strong enrichment in B-cell lymphoma (Figure 5B). These
examples suggest that key genes can be identified using the
enrichment score alone without restricting the comparison to a
single specific cell of origin. This approach will be most useful for
cancers where the cell of origin is not clear or very difficult
to obtain.

To identify biomarkers for diagnostics and treatment purposes,
enrichment scores in cancer tissues need to be compared with the
primary tissue of tumor origin. To identify potential biomarkers we
defined a biomarker score as the score in cancer cells/tissues minus
the highest score across primary tissues of tumor origin. Based on
the scheme applied to recover known and novel TFs in T-cell
development, we reasoned that putative tumor specific genes could
be identified by subtracting the highest score among primary
tissues of tumor origin from the enrichment score in the tumor
of interest.

For instance, to identify T-cell leukemia enriched genes, for
each probe, the highest enrichment score in any of the primary
T cells was subtracted from the T-cell leukemia enrichment score.
Consequently the genes were ranked and the top 15 are shown in
Figure 5C. The top scoring gene in T-cell leukemia is ALDH1A2,
which was previously shown to be induced by TAL1 and LIM
proteins in T-cell acute lymphoblastic leukemia.32 The second

Figure 4. T-cell–enriched transcription factors. (A) A heatmap representation of enrichment scores for genes identified as highly enriched in T cells. Genes are ranked from
highest to lowest T-cell score and top scoring BCL11B is the only TF highly enriched in T cells. (B) A histogram representation of the sum of enrichment scores in T cells for all
genes. The top 2.5% genes of that distribution were accepted as significantly enriched and are shown in panel A. (C) Enrichment profile of ZBTB25 showing the top 20 enriched
cells/tissues. (D) Effect of ZBTB25 depletion on TCR-stimulated NF-AT signaling. ZBTB25 knockdown Jurkat E-6 stable cells were electroporated with 8 �g of NF-AT–luc
reporter and 1 ng of renilla-luc reporter. After 18 hours of electroporation, cells from each sample were dispensed into 3 equal aliquots with 1 mL of complete IMDM media with
or without anti-CD3 plus anti-CD28 antibodies (1 �g/mL of each) or PMA (50 ng/mL) plus anti-CD28 antibody (1 �g/mL). After another 7 hours of incubation, cells were
harvested and examined for luciferase activity. The experiment was done in triplicates. (E) Effect of ZBTB25 depletion on the induction of TCR stimulated NF-AT target genes.
Indicated ZBTB25 knockdown Jurkat E-6 stable cells were incubated with or without anti-CD3 plus anti-CD28 antibodies (1 �g/mL of each) for 24 hours. Then 3 sets of
1 � 106 cells from each experimental condition were harvested independently for real-time RT-PCR analysis of indicated gene expression. The experiment was done in
biologic triplicates.
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ranking gene, TSPAN7, appears to be restricted to the brain among
the primary tissues, which is consistent with the current literature.33

However, it is not detectable in primary T-cell subsets except for a
low expression in Thymic CD34� T cells. This observation makes
TSPAN7 an attractive T-cell leukemia biomarker candidate.
TSPAN7 is a member of the transmembrane 4 superfamily, also
known as the tetraspanin family. Most of these members are
cell-surface proteins that are characterized by the presence of
4 hydrophobic domains and play a role in the regulation of cell
development, activation, growth, and motility. TSPAN7 was previ-
ously reported as a T-cell leukemia–specific marker and was
detected as such at the mRNA levels as well as protein level.34 We
confirmed this observation by quantitative PCR using T-cell
leukemia cell lines, primary T cells, B cells, and monocytes
(supplemental Figure 9). While TSPAN7 needs to be further studied
as a potential biomarker, this example demonstrates the simplicity
and robustness by which potential cancer cell/tissue enriched genes
can be identified.

Discussion

This study provides a compendium of gene expression profiles that
contains the largest collection of normal immune subsets as-
sembled to date. Cell specificity is a key component in unraveling
gene function and transcriptional networks. Here we devised an
enrichment scoring system to quantify specificity with respect to
the cells and tissues present in the compendium. The enrichment
score is not a measure of expression levels. GAPDH, for instance,
is highly expressed in all cells but has a very low enrichment score,
which reflects a lack of specificity. Only genes highly expressed in
a subset of tissues reach a high enrichment score as shown in Figure
2. The enrichment score provides several key advantages compared
with the traditional z-score of mean expression levels: (1) an
improved signal to noise ratio that takes into account variability
within each group; (2) a score that is comparable between genes,
allowing gene ranking based on their specificity in each cell
type/tissue; and (3) does not require a predefined control tissue.
Here we demonstrate feasibility of uncovering cell-specific tran-
scription factors in T-cell fate decisions. This proposed schema
could be adapted to study cell- and tissue-specific regulatory
elements in cancer, stem cell biology, and human disease. The
advantages of using the enrichment score were illustrated using

multiple examples where the enrichment profiles of known genes
were consistent with current knowledge. For instance, the top
4 ranking TFs in ES cells (Figure 1) were previously shown to
define the ES cell state.11 The resource provided here is not limited
to T cells and provides significant insights into many cells and
tissues. For instance, a previously undescribed secreted hormone
expression signature (eg CER1, LEFTY12, NPPB, GAL, NTS1) was
observed in pluripotent embryonic stem cells, suggesting that a
combinatorial control of autocrine factors maybe vital to
pluripotency.

This dataset is not without limitations. Enrichment scores are
limited to the genes present on the array (approximately 12 000)
and existing profiles do not reflect any transcriptional changes that
result from a stimulus, such as exposure to hypoxia, starvation, or
cytokine stimulation, all of which are important parameters in
predicting gene function.

To determine the expression pattern of TFs in the human
genome we focused on T-lymphocyte biology. Previous studies of
TFs in T-cell biology focused on a few T-cell subsets and
differential expression within these subsets. Here we demonstrated
the utility of profiling with respect to a large number of cells and
tissues that represent the entire human body. While the mouse is an
attractive model system to study T- and B-cell responses, it is
essential to generate expression and enrichment maps in human
immune cells to have the ability to compare and contrast these
profiles with mouse datasets. For instance, ZBED2 is a 25-kDa
human protein of unknown function containing a BED-type zinc
finger domain. BED domains were previously studied in Drosoph-
ila mealanogaster BEAF and DREF proteins. These proteins were
shown to bind to insulators, which are genomic elements capable of
silencing distinct sectors of the chromatin. Several members of the
BED domain family have been studied in humans. ZBED3 was
shown to modulate the Wnt/beta-catenin signaling pathway35 and
ZBED1, a human homologue of DREF, was shown to be involved
in regulating cell proliferation.36 ZBED2 is conserved in Rhesus
monkies, Macaques, chimpanzee, cows, horses, and dogs, but not
in rodents. It is the top scoring gene in Th2 cells and the third
scoring gene in Th1 cells. That high level of enrichment suggests
that ZBED2 may have an important role in T-cell function that
would have not been recovered by examining mouse T-cell
datasets. Sixteen TFs were identified as highly enriched during
T-cell development based on their high enrichment score or change
across development (supplemental Figure 3). Of these 16 TFs,

Figure 5. Genes enriched in hematologic cancers. (A) Top
15 enriched genes in B cell lymphoma. (B) CD70 enrichment
profiles showing the top 5 cells/tissues in the primary cell
dataset (top) and cancer cell dataset (bottom). Treg enrich-
ment was abolished in the presence of cancer derived tissues
due to significantly higher expression in cells derived from
B-cell lymphoma. (C) Top 15 enriched genes in T-cell leuke-
mia cells after reducing the highest enrichment score in
primary T cells for each gene. For illustration purposes, in
cases where multiple probes for the same genes exist, only
the higher scoring probe is shown.
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14 were previously deleted in mice and MYB, RUNX3, TCF7, and
SOX4 had a phenotype consistent with a defect in T-cell develop-
ment.37-40 BACH2 deficient mice had a B-cell defect in class switch
recombination, a recombination of immunoglobulin heavy chain
required to produce antibodies.41 However, another study found
that BACH2 is a regulator of IL2 in cord blood CD4� T cells.42

Both observations are supported by the enrichment profile of
BACH2 in B and T cells.

While some TFs, as demonstrated here, can be identified
through enrichment profiles, others that are widely expressed or do
not vary significantly in expression may also play a role. Such TFs
could still be detected by enrichment profiles of their target genes.
We demonstrated this approach by clustering genes with similar
enrichment profiles in T-cell development and testing their promot-
ers for over-represented binding sites compared with suitable
backgrounds. We successfully identified essential TFs including
GFI1, MYB, RUNX3, ETS1, STAT5A, STAT5B, and members of the
E2F family. This analysis not only provides an additional layer of
confidence for TFs predicted by enrichment profiles, but also
provides insight into the potential targets and the specific stages in
which the TF plays a role. For instance, MYB was identified in
genes highly enriched in CD8� SP cells, while GFI1 in genes
enriched in the CD34� precursors. Novel TFs that emerged from
this analysis and may play a functional role include MEF2
and NKX2-2.

ZBTB25 was identified as one of the TFs highly enriched in
T cells. ZBTB25 belongs to the BTB/POZ-ZF transcription factor
family with 60 such genes encoded in the human genome,
characterized by an N-terminal POZ/BTB domain and carboxyl
terminus DNA binding zinc finger motifs. The BTB/POZ (Broad
complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain
is a 100 amino acid, highly conserved motif that mediates
protein–protein interactions. POZ-ZF transcription factors gener-
ally interact with their cognate DNA sequences via their zinc finger
motifs (the majority of which are of the Krüppel-like C2H2 type) to
bring about chromatin modification and/or restructuring, typically
resulting in transcriptional repression via POZ domain recruitment
of corepressor complexes. Crucial roles have been revealed for
several vertebrate POZ-ZF proteins including specification of CD4
versus CD8 lineage decisions by ZBTB7A (Th-POK) as well
germinal center formation by BCL6. Data presented in this
manuscript suggests that ZBTB25 antagonizes NF-AT induced gene
expression analogous to suppression of STAT6 target genes by
BCL6. These data contribute to the emerging concept that BTB/
POZ domain containing TFs play an important role in cell and stage
specific inhibition of T-cell function. Furthermore, a number of TFs

such as ZNF22 and MITF2 are enriched in T cells, suggesting
functional importance in T-cell biology.

Unraveling the complexity of CD4� and CD8� development
and T-cell effector responses will require a systematic knowledge
of the expression changes occurring during differentiation. We
have developed and presented an approach that has broad applica-
tions. This study showed that expression patterns of many TFs
correlate well with their function given a large enough dataset. This
approach can be extended to other single channel platforms and
additional datasets as data become available.
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