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In chronic-phase chronic myeloid leukemia
(CML) patients, the lack of a major cytoge-
netic response (< 36% Ph� metaphases) to
imatinib within 12 months indicates failure
and mandates a change of therapy. To iden-
tify biomarkers predictive of imatinib failure,
we performed gene expression array profil-
ing of CD34� cells from 2 independent co-
horts of imatinib-naive chronic-phase CML
patients. The learning set consisted of retro-
spectively selected patients with a complete
cytogenetic response or more than 65% Ph�

metaphases within 12 months of imatinib
therapy.BasedonanalysisofvarianceP less
than .1 and fold difference 1.5 or more, we
identified 885 probe sets with differential
expression between responders and nonre-
sponders, from which we extracted a 75-
probe set minimal signature (classifier) that
separated the 2 groups. On application to a
prospectively accrued validation set, the
classifier correctly predicted 88% of re-
sponders and 83% of nonresponders. Bioin-
formaticsanalysisandcomparisonwithpub-

lished studies revealed overlap of classifier
genes with CMLprogression signatures and
implicated �-catenin in their regulation, sug-
gesting that chronic-phase CML patients
destined to fail imatinib have more ad-
vanced disease than evident by morpho-
logic criteria. Our classifier may allow direct-
ing more aggressive therapy upfront to the
patients most likely to benefit while sparing
good-risk patients from unnecessary toxic-
ity. (Blood. 2010;115:315-325)

Introduction

Imatinib is an effective therapy for the majority of patients with
chronic-phase chronic myeloid leukemia (CML). However, approxi-
mately 20% to 30% of patients fail imatinib and require alternative
treatments.1,2 The cytogenetic response at 12 months is a powerful
prognosticator of outcome. In a large trial of patients treated with
standard-dose imatinib (400 mg daily), the projected rates of
event-free survival were 97% and 93%, respectively, for patients
who had attained a complete cytogenetic response (CCyR, 0%
Philadelphia chromosome-positive [Ph�] metaphases) or major
cytogenetic response (MCyR, � 36% Ph� metaphases), but only
81% in patients with less than MCyR at 12 months.1 In view of the
high risk of progression, an expert panel convened by the European
Leukemia Net has concluded that lack of MCyR at 12 months
(herein referred to as primary cytogenetic resistance) defines
imatinib failure and warrants a change in the therapeutic strategy.3

More intensive therapy upfront has been proposed to improve
the rates of MCyR.4 Because most patients will do well on standard
therapy, it would be desirable to direct early treatment intensifica-
tion to high-risk patients. The best clinical predictor of primary
cytogenetic resistance is the Sokal risk score.5 In the International
Randomized Interferon versus STI571 (IRIS) study, the projected
rate of CCyR at 48 months was only 69% of patients with a high
Sokal risk compared with 91% with low risk and 84% with
intermediate risk.6 However, for clinical decisions, a more reliable

prognosticator is needed. Based on the promising results of gene
expression profiling for response prediction in various hematologic
malignancies,7-11 we had previously attempted to predict MCyR by
microarray analysis of unselected blood or bone marrow white
cells collected before therapy but found no significant differences
between responders and nonresponders.12 This led us to hypoth-
esize that detecting a signature associated with primary cytogenetic
resistance might require analyzing a more primitive cell compart-
ment. We therefore performed gene expression profiling on CD34�

cells collected before imatinib therapy from 2 independent groups
of chronic-phase CML patients, an initial training set of late
chronic-phase patients, and a prospectively accrued validation set
of newly diagnosed chronic-phase patients. Here we report the
identification of a gene classifier of CD34� CML cells that predicts
MCyR with high accuracy.

Methods

Patients

The training set was retrospectively selected from CML patients treated at
Oregon Health & Science University between 1998 and 2004. Most of the
patients had failed prior interferon-�–based therapy and were treated on
phase 2 studies of imatinib before its regulatory approval. Eligibility
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criteria were a diagnosis of CML in chronic phase (based on the criteria of
the IRIS trial), availability of bone marrow mononuclear cells (MNCs)
stored immediately before initiating imatinib therapy, and availability of at
least 1 year of follow-up, including karyotyping. Responders were defined
as those patients with at least a partial cytogenetic response within
12 months of therapy and nonresponders as all other patients. Because this
response definition is inherently imprecise given the routine sampling of
only 20 metaphases and may therefore misclassify responses, the training
set focused on patients with CCyR during their first year of imatinib therapy
as opposed to patients who had not achieved even a minor cytogenetic
response (ie, remained at least 66% Ph�) during that time, thereby reducing
noise by enriching the training set for the extremes of the response
spectrum. Of 51 samples initially processed, 36 were included in the final
analysis, whereas the remainder was excluded because they failed to meet
the minimum quality requirements for microarray analysis (see “RNA
extraction and gene expression profiling”). The second group of patients
(validation set) consisted of 42 consecutive newly diagnosed chronic-phase
patients treated with imatinib at the University of Newcastle (United
Kingdom) or University of Leipzig (Germany). In 23 of these patients, the
microarray analysis was successful. The majority of these patients were
followed with metaphase karyotyping; however, response was assessed by
fluorescence in situ hybridization in 7 of 17 responders and 2 of 6 nonre-
sponders. In these patients, CD34� cells were selected from peripheral
blood collected at diagnosis. The study was approved by the institutional
review board of all participating institutions, and all subjects provided
written informed consent in accordance with the Declaration of Helsinki.

Isolation of CD34� cells

In the case of the training set, MNCs were purified from bone marrow by density
gradient centrifugation and cryopreserved in liquid nitrogen. Immediately before
CD34� cell selection, the cells were thawed at 37°C and washed in Dulbecco
phosphate-buffered saline containing 0.1% human albumin (Baxter Healthcare
Corporation), 1% recombinant DNase (Pulmozyme; Genentech), and 2.5mM
MgCl2. The samples were enriched for viable cells using the Dead Cell Removal
Kit (Miltenyi Biotec). Next, the cells were resuspended in Hank’s balanced salt
solution with 0.5% fetal bovine serum, 2% N-2-hydroxyethylpiperazine-N�-2-
ethanesulfonic acid, and 1% recombinant human DNase (Genentech), stained
with CD34-fluorescein isothiocyanate (FITC) and CD45-peridinin chlorophyll
protein (PerCP)–Cy5.5 monoclonal antibodies (BD Biosciences), and placed in
Hanks balanced salt solution containing 0.5% fetal bovine serum, 2% N-2-
hydroxyethylpiperazine-N�-2-ethanesulfonic acid, and 1% recombinant human
DNase. For the identification of dead cells, propidium iodide (Roche Diagnos-
tics) was added to the cell solution immediately before sorting.

A BD FACSAria (BD Biosciences) was used to sort CD34� cells. Gates
on forward scatter (FSC) and side scatter, followed by FSC-width (FSC-W)
and FSC-height (FSC-H), were used to exclude dead cells and debris. Next,
gates were set on propidium iodide-negative cells to ensure that only viable
cells were selected. Finally, on the CD34-FITC and CD45-PerCP-Cy5.5
histogram, CD45-PerCP-Cy5.5 dim cells that brightly coexpressed CD34-
FITC were selected. The procedure was regarded as a success if greater than
1000 CD34� cells were isolated, with a purity of greater than 80% CD34�

cells by flow cytometry. An example of the sorting strategy is shown in
supplemental Figure 1 (available on the Blood website; see the Supplemen-
tal Materials link at the top of the online article). After sorting, CD34� cells
were placed in PicoPure extraction buffer (Arcturus) and stored at �80°C
until processed further. Small aliquots of CD34� cells were also stored for
fluorescence in situ hybridization (FISH) to assess the proportion of
BCR-ABL� cells. In the case of the validation set, MNCs were isolated
from peripheral blood using density gradient centrifugation. CD34� cells
were isolated from the MNC using MiniMACS columns (Miltenyi Biotec),
following the instructions of the manufacturer.

RNA extraction and gene expression profiling

RNA extraction was performed with the PicoPure RNA Isolation Kit
(Arcturus) once all cell sorting had been completed. Samples were
quantified using the NanoDrop ND-1000 UV-Vis spectrophotometer (Nano-
Drop Technologies), and the quality of the RNA was assessed using the

Agilent 2100 Bioanalyzer (Agilent Technologies). Only samples with
electropherograms showing a size distribution pattern predictive of accept-
able microarray assay performance were processed further. Details of the
quality assessment procedure will be reported elsewhere (K.A.V., H. Paik,
C. Runyon, B. Tompkins, L. Crossman, M.W.N.D., C.A.H. Factors
influencing the optimization and standardization of the Affymetrix Gene-
Chip expression assay small sample amplification protocol in the microar-
ray core laboratory (poster). Annual Meeting of the Association of
Biomolecular Resource Facilities, February 2005 ). To generate sufficient
cRNA target for microarray hybridization, we used the GeneChip Eukary-
otic Small Sample Target Labeling Assay Version ll (Affymetrix), with
inputs from 5 to 20 ng of total RNA. Control experiments in the microarray
core laboratory demonstrated high-quality microarray data from inputs as
low as 5 ng (C.A.H., personal communication). After successful amplifica-
tion, 10 �g of labeled target cRNA was hybridized to HG-U133 Plus 2.0
GeneChip arrays (Affymetrix). Arrays were scanned using a laser confocal
scanner (Agilent Technologies), and the image processing and expression
analysis were performed using Affymetrix GCOS, Version 1.2 software.
For quality assurance/quality control purposes, the parameters �1 and �2

were set to 0.05 and 0.065 (Affymetrix defaults), respectively. These
parameters set the point at which a probe set was called present (P),
marginal (M), or absent (A). Minimal quality control parameters for
inclusion in the study included P more than 30%, average signal in keeping
with the average signal of other samples within that hybridization group (ie,
the group of samples hybridized as a batch), and a GAPDH 3�/5� ratio of
less than or equal to 3.62. Overall, the process of CD34� cell selection,
RNA extraction, and array hybridization was successful in 36 of 51 patients
(71%). The average present call rate in this group was 41.5% (range,
38.8%-47.1%). FISH for BCR-ABL was successful in 28 of the 36 samples.
The median percentage of BCR-ABL� CD34� cells was found to be 98.5%
(range, 33%-100%). The 23 samples of the validation set were processed in
an identical fashion approximately 18 months after the training set. For
consistency, similar amounts of input RNA were used.

Standard statistical methods

Differences in the distribution of patient demographics/treatment history
were examined by categorical data analysis in the training set using the
SPSS software package.

Microarray data analysis

Low-level analysis of the Affymetrix data was conducted using the Robust
Multiarray Average (RMA) algorithm.13 Only Perfect Match intensities
were used. Parameters for RMA included model-based background correc-
tion, quantile normalization, and median polish. Transcript-by-transcript
(ie, unique Affymetrix Probe set IDs) analysis of variance to determine
differential expression between NR and R was performed on the training set
(N � 36). All P values were false discovery rate adjusted. With respect to
feature, selection was based on effect size (fold change [FC] � 1.5) and
statistical significance (P � .1) to minimize false negatives. Data were
further filtered based on threshold expression level and variability (based on
coefficient of variation). Class prediction was performed using the nearest
shrunken centroids algorithm.14 Testing of the classifier was performed on
an independent, blinded validation set (N � 23). The raw (cel) and
normalized data were deposited in National Center for Biotechnology
Information gene ontology (GO) database (GSE14671).

Structural analysis of the classifier

With regard to downstream analysis of the classifier, overrepresented GO
and pathway annotations were identified in the classifier transcripts using
categorical data analysis (with adjustment for the nested multiple compari-
sons). Known protein-protein interactions were examined for classifier
members as well as with other genes using the Metacore database. In
addition to examining functional enrichment, potential sub-networks (or
“small networks”) in the classifier were examined using known and curated
protein-protein interactions from the MetaCore database. These sub-
networks were ranked based on statistical significance and the number of
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known biologic pathways found in the sub-network. The P values are based
on a hypergeometric distribution in which the P value essentially represents
the probability of particular mapping arising by chance, given the numbers
of genes in the set of all genes on maps/networks/processes, genes on a
particular map/network/process, and genes in the experiment. This is
formally defined as:

p-Value �
R!n!(N � R)!(N � n)!

N!

� 	
i�max(r,R�n�N)

min(n,R)
1

i!(R � i)!(n � i)!(N � R � n � i)!

where N � total number of nodes in MetaCore database, R � number of
the network’s objects corresponding to the genes and proteins in your list,
n � total number of nodes in each small network generated from your list,
and r � number of nodes with data in each small network generated from
your list.15

Meta-analysis

CEL files for the Yong et al paper21 were provided by the authors. The data
were analyzed similarly to that of the training set (RMA normalization,
1-way analysis of variance). Reported fold changes and P values for the
Zheng et al dataset16 were downloaded from the journal website. Overlap
was calculated based on the number of shared putative differentially
expressed genes. Simulations in the statistical computing environment R
were performed to determine the number of overlapping features (0)
expected to be shared among 2 candidate lists of different lengths (n1, n2)
both sampled from the same array (with N features). Statistical significance
was determined by comparing the observed value with the distribution
generated from 10 000 simulations performed for a given configuration (n1,
n2, N). Standard analysis tools were applied to patient characteristics.
Low-level analysis of the Affymetrix data was conducted using the RMA
algorithm.13 Transcript-by-transcript analysis of variance to determine
differential expression between nonresponders and responders was per-
formed on the training set. Testing of the classifier was performed on the
independent, blinded validation set. With regard to downstream analysis of
the classifier, overrepresented GO and pathway annotations were identified
in the classifier transcripts using categorical data analysis. Known protein-
protein interactions were examined for classifier members as well as with
other genes using the Metacore database.

Results

Baseline characteristics of the training set

Overall, the process of CD34� cell selection, RNA extraction, and
array hybridization was successful in 36 of 51 patients (71%),
among them 24 nonresponders and 12 responders. Nineteen samples
failed at one of the quality control steps during sample processing.
FISH for BCR-ABL was successful in 28 of 36 patients (78%) and
revealed between a small but statistically significant difference
between nonresponders and responders (median of 100% vs
98.5%, P � .01). Compared with responders, nonresponders tended
to be older (P � .048) and had a longer interval between diagnosis
and imatinib start (P � .037), but there were no other significant
differences (Table 1).

Construction of the response classifier

To determine whether the gene expression profiles of CD34�

cells from prospective cytogenetic responders and nonre-
sponders are different, we performed unsupervised hierarchical
cluster analysis. We found partial and statistically significant
separation between responders and nonresponders (P � .024;

Figure 1). Univariate analysis of the training set identified
885 differentially expressed transcripts based on minimal effect
size (FC 
 1.5 and P � .1; supplemental Table 1). The predic-
tion analysis for microarray algorithm was then applied to the
training set, and classification accuracy was determined via
cross-validation. Cross-validation was used to choose an opti-
mum gene number (threshold), which minimized classification

Table 1. Clinical characteristics of the training set

Characteristic Value P

Male sex, no. (%)

Responders 15 (63) 1.00

Nonresponders 7 (58)

Median age at diagnosis, y (range)

Responders 51 (28-76) .048

Nonresponders 61 (24-71)

Hemoglobin, g/dL

Responders 13.1 (10.0-16.3) .575

Nonresponders 12.5 (10.3-15.8)

White cell count, �103/L

Responders 12.0 (2.5-70.8) .373

Nonresponders 17.8 (4.7-116)

Platelet count, �103/L

Responders 265.5 (19-935) .098

Nonresponders 350 (99-1372)

Peripheral blood basophil count, %

Responders 4 (0-31) .938

Nonresponders 6 (0-16)

Peripheral blood eosinophil count, %

Responders 1 (0-8) .441

Nonresponders 2 (0-3)

Peripheral blood blast count, %

Responders 0 (0-11) .657

Nonresponders 0 (0-5)

Bone marrow blast count, %

Responders 1 (0-13) .234

Nonresponders 3 (0-18)

Spleen size, cm below costal margin

Responders 0 (0-11) .806

Nonresponders 0 (0-10)

Chronic phase with CE*

Responders 6 (26) .874

Nonresponders 3 (27)

Deletion of derived chromosome 9, no. (%)

Responders 2 (8) .717

Nonresponders 1 (8)

Prior hydroxyurea therapy

Responders 20 (83) .180

Nonresponders 12 (100)

Prior interferon-� therapy

Responders 19 (79) .113

Nonresponders 12 (100)

Other prior therapy

Responders 7 (29) .092

Nonresponders 7 (58)

Initial imatinib dose 600 mg daily, no. (%)†

Responders 10 (43) .255

Nonresponders 3 (25)

Time from diagnosis to imatinib therapy, d

Responders 928 .037

Nonresponders 1812

CE indicates clonal cytogenetic evolution.
*Two patients (1 responder and 1 nonresponder) were subsequently found to

fulfill the criteria for accelerated phase (platelet count � 100/nL unrelated to therapy,
and basophils in the blood 
 20%).

†Patients with CE were classified as in accelerated phase in the phase 2 imatinib
studies (but not in the IRIS study) and therefore treated with an initial dose of 600 mg
imatinib daily.
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errors and resulted in a 75-transcript predictor (Table 2). Fifty of
these transcripts were up-regulated and 25 were down-regulated
in nonresponders versus responders.

Validation of the response classifier in an independent test
sample

For validation, we prospectively collected CD34� cells from
42 newly diagnosed chronic-phase patients before starting ima-
tinib. Twenty-three samples (55%) passed all the quality control
steps and were included in the analysis. Seventeen of these patients
(74%) achieved CCyR within 12 months (Table 3), in keeping with
the results of the IRIS study.17 Microarray analysis was carried out
using the same protocol as for the training set. As with the training
set, we first performed unsupervised cluster analysis using the
75-probe set classifier. Responders were readily separated from
nonresponders (Figure 2). Next, we applied the prediction algo-
rithm to the validation set. Correct predictions were made in 15 of
17 responders and 5 of 6 nonresponders, for an estimated accuracy
rate of 86.9% (Table 3).

Comparison with Sokal scores

Patients with a high Sokal score (
 1.2) have a lower probability of
achieving CCyR. We therefore examined the relation between the
Sokal score of the patients in the validation set and their classifica-
tion by gene array. All 10 patients with a low Sokal score (� 0.8),
7 of 11 patients with an intermediate Sokal score (
 0.8; � 1.2),
and 0 of 2 patients with a high Sokal score (
 1.2) were classified
as responders (Table 3). To compare the ability of the Sokal score
and the classifier to predict cytogenetic response, we assumed that
patients with a high Sokal risk would be nonresponders, whereas
patients with a low or intermediate risk would be responders. For
16 of the 23 subjects, both Sokal score and classifier correctly
predicted response. In 2 patients, classifier and Sokal score made
identical but incorrect predictions: patient V21 (Sokal score 1.5)
was misclassified as a nonresponder and patient V5 (Sokal
score 0.6) was misclassified as a responder. Risk prediction for the
remaining 5 subjects was discordant between classifier and Sokal
score. The classifier correctly identified 4 patents as nonresponders
(V3, V15, V16, and V20) whose Sokal scores (1.1, 1.2, 0.7, and
1.0, respectively) predicted response, whereas 1 responder (V12,
Sokal risk 0.9) was misclassified as a nonresponder. Thus, the
classifier correctly identified 5 of 6 nonresponders, compared with
1 of 6 based on Sokal criteria.

Functional structure of the classifier

To gain insight into mechanisms underlying primary cytogenetic
resistance and develop an understanding of structure and
regulation of the classifier genes, we applied bioinformatics
tools to identify potential regulatory networks, focusing on the
minimal classifier.

GO analysis revealed overrepresentation of several functional
groups (Table 4). Genes related to ligand/receptor binding are
significantly overrepresented (false discovery rate adjusted
P � .003), including S100A10, ADM, CLEC7A, CECR1, FCN1,
and ANGPT1. Five of these transcripts were down-regulated and
4 (VWF, ANGPT1, EGFL6, and MUC4) were up-regulated in
nonresponders compared with responders. A second group with
significant overrepresentation is transcripts involved in cell adhe-
sion (P � .001). All 6 transcripts in this group (MMRN1, ITGA2,
VWF, ITGB8, EVA1, and MUC4) were up-regulated in nonre-
sponders. A third cluster of transcripts with significant overrepre-
sentation (P � .02) is related to transcriptional regulation. Seven of
these transcripts were up-regulated (ZNF44, MEIS1, NFIB [3 dif-
ferent transcripts], ZNF140, and ZNF253) and 2 down-regulated
(CEBPB and MAFB) in nonresponders.

Pathway analysis

To identify regulatory networks, we examined potential protein-
protein interactions among the members of the classifier, using the
MetaCore database. Analysis of protein-protein interaction data
identified a highly significant interaction sub-network (P � 4.85�36),
which included 2 ANGPT1 signaling-related pathways (both part
of MetaCore Curated Map 532). The key classifier node that linked
both of these pathways was ANGPT1, which had direct interactions
with other key angiogenesis proteins in the sub-network, such as
TIE2 (Figure 3). GO analysis within the ANGPT1 sub-network
showed a highly significant overrepresentation (P � 4.20�07) of
proteins associated with transmembrane receptor protein tyrosine
kinase signaling (GO, 0007169). This annotation represents the
series of molecular signals generated as a consequence of a
transmembrane receptor tyrosine kinase binding their cognate
ligands. The majority of the members with this GO annotation were
also members of the ANGPT1-related pathways (Figure 3). These
data suggest that activation of tyrosine kinases through receptor
binding and increased angiogenesis may contribute to primary
cytogenetic resistance.

Figure 1. Unsupervised cluster analysis was per-
formed on the training set (N � 36). Patients who
subsequently achieved CCyR partially separated from
patients with more than 65% Ph� metaphases after
12 months of imatinib therapy.
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Table 2. Probe sets (transcripts) of the minimal response classifier

Probe set Gene symbol Training set fold change Training P Test set fold change �-Catenin target by SACO

225688_s_at PHLDB2 4.197 .009 1.646 Yes

205848_at GAS2 3.400 .021 2.115 No

219454_at EGFL6 3.302 .010 1.853 No

238206_at — 2.829 .011 2.290 No

205612_at MMRN1 2.412 .012 1.862 Yes

229963_at NGFRAP1L1 2.410 .038 1.802 No

235342_at SPOCK3 2.337 .042 2.515 Yes

226003_at KIF21A 2.287 .034 1.672 No

230791_at — 2.224 .021 1.551 No

205609_at ANGPT1 2.129 .028 1.732 No

223503_at TMEM163 2.098 .010 1.594 Yes

222885_at EMCN 2.095 .021 1.765 Yes

227314_at ITGA2 2.086 .004 1.489 Yes

226425_at CLIP4 2.084 .005 1.474 Yes

205637_s_at SH3GL3 2.013 .041 1.972 Yes

1562403_a_at SLC8A3 1.979 .003 1.725 Yes

228396_at — 1.940 .055 2.240 No

228027_at GPRASP2 1.938 .044 1.664 No

202112_at VWF 1.927 .078 3.179 Yes

1554007_at — 1.918 .011 1.562 No

223669_at HEMGN 1.881 .034 1.483 Yes

229654_at ZNF44 1.875 .001 1.458 Yes

204069_at MEIS1 1.871 .003 1.360 Yes

205518_s_at CMAH 1.842 .005 1.553 No

221802_s_at KIAA1598 1.840 .073 2.099 Yes

1556136_at RP11–145H9.1 1.837 .011 1.607 Yes

209488_s_at RBPMS 1.836 .061 1.855 Yes

228195_at MGC13057 1.820 .023 1.702 Yes

213029_at NFIB 1.806 .014 1.865 Yes

203404_at ARMCX2 1.792 .045 1.467 No

226189_at ITGB8 1.779 .014 1.390 Yes

209290_s_at NFIB 1.746 .091 2.390 Yes

1552626_a_at TMEM163 1.742 .015 1.442 Yes

230698_at — 1.741 .064 1.678 No

213306_at MPDZ 1.737 .075 1.704 No

230518_at EVA1 1.711 .009 1.478 No

207836_s_at RBPMS 1.708 .064 1.507 Yes

210102_at LOH11CR2A 1.702 .034 1.487 Yes

227417_at MOSC2 1.691 .082 1.519 Yes

204523_at ZNF140 1.688 .003 1.543 No

230291_s_at NFIB 1.672 .070 1.994 Yes

209459_s_at ABAT 1.657 .036 1.504 Yes

228805_at C5orf25 1.637 .008 1.564 No

227875_at KLHL13 1.632 .063 1.594 Yes

217109_at MUC4 1.630 .084 1.482 Yes

203786_s_at TPD52L1 1.627 .062 1.954 Yes

205079_s_at MPDZ 1.627 .086 1.367 No

201150_s_at TIMP3 1.616 .055 1.826 Yes

235227_at — 1.609 .009 1.736 No

242919_at ZNF253 1.602 .020 1.476 No

212501_at CEBPB 0.598 .037 0.459 No

219505_at CECR1 0.587 .058 0.425 Yes

202208_s_at ARL4C 0.580 .007 0.554 No

222496_s_at FLJ20273 0.579 .048 0.516 Yes

202912_at ADM 0.549 .095 0.381 Yes

242397_at — 0.549 .001 0.658 No

205896_at SLC22A4 0.541 .004 0.579 Yes

1569263_at — 0.537 .010 0.445 No

203234_at UPP1 0.535 .015 0.478 Yes

200872_at S100A10 0.531 .004 0.611 Yes

218589_at P2RY5 0.515 .092 0.532 No

201422_at IFI30 0.494 .037 0.440 No

221840_at PTPRE 0.491 .025 0.386 Yes

221698_s_at CLEC7A 0.480 .071 0.434 No

SACO indicates sequential analysis of chromatin occupancy; and —, not available.
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Involvement of �-catenin in the regulation of classifier genes

The rate of MCyR is highest in the chronic phase and lowest in
blast crisis.18 Because activation of Wnt/�-catenin signaling in
granulocyte/macrophage progenitor cells has been reported in cells
from patients with blast crisis,19 we reasoned that genes associated
with failure to achieve MCyR may be regulated by �-catenin,

reflecting an advanced-disease stage that is not yet visible morpho-
logically. To test this hypothesis, we used a library of �-catenin
targets previously identified in our laboratory by serial analysis of
chromatin occupation in a colon cancer cell line.20 We found a
significant enrichment of potential �-catenin targets in the classifier
list compared with the background distribution on the array (54.6%

Table 3. Sokal risk score (observed and predicted response in the validation set)

Patient # Sokal risk score Observed 
response 

Predicted 
response 

V1 1.1 R R
V2 0.7 R R
V3 1.1 NR NR
V4 1.0 R R
V5 0.6 NR R
V6 0.9 R R
V7 0.7 R R
V8 0.9 R R
V9 0.7 R R
V10 0.8 R R
V11 0.5 R R
V12 0.9 R NR
V13 1.0 R R
V14 0.9 R R
V15 1.2 NR NR
V16 0.7 NR NR
V17 0.8 R R
V18 1.1 R R
V19 1.7 NR NR
V20 1.0 NR NR
V21 1.5 R NR
V22 0.7 R R
V23 0.6 R R

Table 2. Probe sets (transcripts) of the minimal response classifier (continued)

Probe set Gene symbol Training set fold change Training P Test set fold change �-Catenin target by SACO

211429_s_at SERPINA1 0.446 .036 0.335 Yes

205653_at CTSG 0.445 .027 0.421 No

202833_s_at SERPINA1 0.441 .062 0.270 Yes

230748_at SLC16A6 0.439 .092 0.514 Yes

222670_s_at MAFB 0.432 .020 0.567 No

203948_s_at MPO 0.423 .052 0.551 Yes

202207_at ARL4C 0.423 .072 0.319 No

218454_at FLJ22662 0.405 .041 0.324 No

204971_at CSTA 0.397 .042 0.464 No

210254_at MS4A3 0.334 .024 0.376 No

205237_at FCN1 0.324 .021 0.333 No

SACO indicates sequential analysis of chromatin occupancy; and —, not available.
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vs 40.7% on array, P � .01). Specifically, 62% of the up-regulated
genes are �-catenin targets with TCF motifs either in the promoter
or within the gene boundaries, suggesting that �-catenin activation
in nonresponders may be an important driver of the gene expres-
sion signature associated with primary cytogenetic resistance.

Comparison with published signatures of CD34� CML cells

Two studies have reported expression signatures of CD34� cells in
relation to disease phase and duration of chronic phase in patients
treated with nonimatinib therapy, respectively.16,21 To test whether
primary cytogenetic resistance is partially a reflection of advanced
disease, we analyzed the 885 response-related genes for overlap
with the published lists. For both the Zheng et al16 (14 concordant
transcripts, Figure 4A) and Yong et al21 (31 concordant transcripts,
Figure 4B) data, there was a highly significant overlap with our list
of 885 transcripts. Five genes (CSTA, RNASE3, PRTN3, PLAUR,
and MPO, all down-regulated in nonresponders) overlapped be-
tween the 3 datasets (Table 5).

Discussion

CML patients with primary cytogenetic resistance, defined as the
failure to achieve MCyR after 12 months on imatinib, have a high
risk of subsequent disease progression.1 The etiology of primary

cytogenetic resistance is poorly understood. BCR-ABL kinase
domain mutations are uncommon, suggesting that the mechanisms
are different from those of acquired resistance.22 Lack of compli-
ance with the medication may also play a role and is impossible to
exclude without unannounced drug level testing. Nonetheless, the
strong predictive value of MCyR at 12 months has stimulated
research to identify biomarkers to predict cytogenetic response
upfront. Several studies have used expression arrays on pretherapeu-
tic samples to identify signatures associated with cytogenetic
response.12,23-26 These studies differ in the source of the RNA
(whole blood, total white cells, MNCs) as well as the array and
bioinformatics platforms used. Although all but one study reported
the identification of a gene classifier predicting cytogenetic re-
sponse, there is no overlap between the gene lists. Without
independent control groups for validation, the reproducibility of
these findings remains to be determined. In our own experience,
applying stringent analysis criteria and an independent validation
set, we found that the gene expression profiles of unselected white
cells from responders and nonresponders were very similar.12 This
is consistent with the observation that almost all chronic-phase
patients achieve a complete hematologic response, suggesting that
the bulk of the (differentiated) leukemia cells are sensitive to
imatinib, irrespective of the subsequent cytogenetic response that
occurs over the course of months. We therefore decided to analyze
CD34� cells as a more primitive cell population.

Table 4. Functional Gene Ontology enrichment in classifier genes

Classification Description Genes P

MF Receptor binding CECR1, FCN1, ADM, ANGPT1, S100A10, VWF, CLEC7A, MUC4, EGFL6 .003

MF Collagen binding VWF, ITGA2 .037

BP Cell adhesion MMRN1, ITGA2, VWF, ITGB8, EVA1, MUC4 .001

BP Transcriptional regulation ZNF44, MEIS1, NFIB, CEBPB, MAFB, ZNF140, ZNF253 .020

MF indicates molecular function; and BP, biologic process.

Figure 2. Unsupervised cluster analysis of the valida-
tion set (N � 23), using the minimal list of 75 probe
sets derived from the training set. Nonresponders and
responders are separated. Sokal scores are indicated for
comparison.
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In a first set of experiments, we optimized the purification of
CD34� cells from cryopreserved MNCs as well as the subsequent
steps of RNA extraction, amplification, and hybridization, using
several stringent quality control steps. Whereas the numbers of
CD34� cells separated were usually small (on average 104, repre-
senting only 0.1% of the MNCs cryopreserved initially), their
purity and viability were high and more than 70% of samples were
successfully hybridized to microarrays. To increase the likelihood
of detecting a resistance signature, we polarized the training sample
by selecting patients from the extremes of the cytogenetic response
spectrum seen with imatinib. As a first indication of a difference
between responders and nonresponders, unsupervised hierachical
clustering showed partial separation of the 2 groups, in contrast to
our previous observation with unseparated white cells.12 Using the
criteria of analysis of variance P value of less than .1 and fold
difference 1.5 or more, we found differential expression of
885 probe sets, from which we extracted a minimal list of
75 transcripts that optimally separated responders and nonre-
sponders. On unsupervised clustering, this minimal probe set
completely separated responders and nonresponders in a prospec-
tively accrued validation cohort of newly diagnosed patients
treated with imatinib. Moreover, the classifier correctly predicted
MCyR at 12 months in 20 of 23 patients. Importantly, 5 of 6 nonre-
sponders were identified correctly, whereas only 1 of 6 would have

been predicted based on high Sokal score (P � .11), suggesting
that the gene classifier may be useful for identification of prospec-
tive nonresponders irrespective of their Sokal risk. The fact that the
minimal classifier predicted response in 2 diverse groups of
patients (the training set of late chronic phase and the validation set
of newly diagnosed patients) and although bone marrow was used
in the training and blood in the validation set suggests that the gene
list identified biologic factors that govern the response to imatinib.
In addition, this bioinformatics analysis revealed that classifier
genes may contribute to primary cytogenetic resistance by affect-
ing diverse cellular functions. Genes associated with adhesion were
consistently up-regulated in nonresponders, suggesting that these
cells may have an increased ability to interact with the bone
marrow microenvironment to derive BCR-ABL–independent sur-
vival signals, consistent with recent reports that microenvironmen-
tal factors contribute to CML cell survival in the presence of
BCR-ABL inhibitors.27 Up-regulation of ANGPT1, the ligand of
Tie2, in nonresponders points to activated angiogenesis and is
consistent with the observation that high microvessel density is an
adverse prognostic feature in CML.28 Indeed, pathway analysis
using MetaCore suggests that ANGPT1 may be a critical node in a
network that involves protein tyrosine kinase signaling from
transmembrane receptors. Last, there are 3 transmembrane carriers
in the classifier, 2 of which (SCL22A4, also known as OCTN and

Figure 3. The Metacore database was used to analyze
protein-protein interactions among the members of the
classifier and identified a highly significant interaction sub-
network (P < 4.85�36), which included 2 ANGPT1 signaling-
related pathways (both part of MetaCore Curated Map 532).
The key classifier node that linked both of these pathways was
ANGPT1. Red circles represent genes up-regulated in
nonresponders.

Figure 4. Meta-analysis to assess overlap between
the 885 probe sets differentially expressed between
responders and nonresponders in the training set,
and 2 previously published datasets. The histograms
represent the results of 10 000 simulations to determine
the probability of seeing a concordance equal to or
greater than what we observed. (A) Comparison with a
gene profile of blastic versus chronic phase reported by
Zheng et al.16 (B) Comparison with a gene profile of
patients with short versus long duration of chronic phase
on treatment with nonimatinib therapy reported by Yong
et al.21
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SLC16A6) are expressed at lower and 1 (SCL8A3) are expressed at
higher levels in nonresponders. Given that low activity or expres-
sion of OCT1, a member of the same family of carriers as
SCL22A4 (also known as OCTN1), predicts a lower likelihood of
achieving a major cytogenetic or major molecular response,29-32 we
have performed functional studies to assess whether OCTN1 may
be a carrier of imatinib. However, we have not found evidence for
this (supplemental Figure 3). The potential role of the other
2 carriers remains to be determined. On the other hand, expression
of OCT1 was below background in our study. The reason for our
failure to detect an association between OCT1 expression in
CD34� cells and response is not immediately obvious, given that

we and others previously described a correlation between high
OCT1 levels in MNCs and subsequent MCyR.30,31 One possibility
is that the probe set on the microarray fails to detect splice variants
specific to CD34� cells. In addition, it has become clear that the
role of drug transporters for imatinib response is complex. For
example, certain MDR1 polymorphisms are correlated with cytoge-
netic response to imatinib, although inhibition of P-glycoprotein in
CD34� CML cells does not sensitize them to the drug.33,34

A comparison with published data revealed that a subset of the
genes contained in the minimal list have previously been associated
with prognosis and disease stage in CML. For example, low
expression of myeloperoxidase and cathepsin G, both reduced in

Table 5. Overlap between gene signatures of non-response versus response (current study), short versus long duration of chronic phase
with non-imatinib therapy (Yong et al.21), and blast crisis versus chronic phase (Zheng et al.16)

Probeset Gene Symbol Current study Yong et al. Zheng et al. Direction 
201693_s_at EGR1 + + - UP
202207_at ARL4C + + - DOWN
202708_s_at HIST2H2BE + + - UP
202912_at ADM + + - DOWN
203948_s_at MPO + + + DOWN
203973_s_at CEBPD + + - DOWN
204174_at ALOX5AP + + - DOWN
204971_at CSTA + + + DOWN
205382_s_at CFD + + - DOWN
205653_at CTSG + + - DOWN
205896_at SLC22A4 + + - DOWN
206851_at RNASE3 + + + DOWN
206871_at ELA2 + + - DOWN
207341_at PRTN3 + + + DOWN
209201_x_at CXCR4 + + - DOWN
210254_at MS4A3 + + - DOWN
210387_at HIST1H2BG + + - UP

210425_x_at 
GOLGA8A /// 
GOLGA8B 

+ + -
UP

210951_x_at RAB27A + + - DOWN
211919_s_at CXCR4 + + - DOWN
211924_s_at PLAUR + + + DOWN

214290_s_at 
HIST2H2AA3 /// 
HIST2H2AA4 

+ + -
UP

214469_at 
HIST1H2AB /// 
HIST1H2AE 

+ + -
UP

214472_at HIST1H3D + + - UP
214575_s_at AZU1 + + - DOWN
215071_s_at HIST1H2AC + + - UP

215779_s_at 

HIST1H2BC /// 
HIST1H2BE /// 
HIST1H2BF /// 
HIST1H2BG /// 
HIST1H2BI 

+ + -

UP
217028_at CXCR4 + + - DOWN

218280_x_at 
HIST2H2AA3 /// 
HIST2H2AA4 

+ + -
UP

221840_at PTPRE + + - DOWN
222067_x_at HIST1H2BD + + - UP
203372_s_at SOCS2 + - + UP
204232_at FCER1G + - + DOWN
204351_at S100P + - + DOWN
205863_at S100A12 + - + DOWN
211924_s_at PLAUR + - + DOWN
212501_at CEBPB + - + DOWN
213524_s_at G0S2 + - + DOWN
213537_at HLA-DPA1 + - + UP
219777_at GIMAP6 + - + UP
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nonresponders, was previously shown to predict for a short
duration of chronic phase in patients treated with conventional
nonimatinib therapy.21 Down-regulation of CEBPB and up-
regulation of GAS2 and ANGPT1 have been shown in CML blast
crisis compared with chronic35,36; the identical regulation pattern is
seen in nonresponders versus responders. These observations
suggested that a subset of the genes associated with primary
cytogenetic resistance may indeed reflect more advanced disease.
We therefore performed meta-analysis using 2 previously pub-
lished datasets on CD34� CML cells.16,21 We found highly
significant overlap with genes differentially expressed between
patients with a short and long chronic phase on conventional
nonimatinib therapy21 as well as a signature of blastic versus
chronic phase.16 Thus, disease progression-related genes constitute
an important component of the resistance signature. Because
activation and nuclear translocation of �-catenin in granulocyte-
macrophage progenitor cells have been shown to occur on progres-
sion from chronic phase to blast crisis,19 we compared the
representation of �-catenin binding sequences between the classi-
fier genes and the remaining array. Using a map of physical
�-catenin targets,20 we found significant enrichment of �-catenin
binding sites in the classifier genes. Preliminary studies in our
laboratory have confirmed �-catenin binding for several of the
predicted target genes (G.Y. and M.W.N.D., unpublished observa-
tions, 2009). Our data are consistent with a recent microarray study
that found evidence for Wnt/�-catenin activation in advanced CML
versus chronic phase, and reported that the profiles of second
chronic phase bear much resemblance to the profiles of advanced
CML.37 Thus, the emerging picture is that gene expression profiling
allows for a more precise diagnosis of disease phase than morpho-
logic criteria. Given the correlation between disease phase and
cytogenetic response,38-40 it is perhaps not surprising that gene
expression profiling is a better predictor of response than morphol-
ogy, at least in the chronic phase. Conversely, it will be interesting
to determine whether patients with advanced CML who achieve
CCyR have expression profiles that resemble chronic phase.
Although it remains to be determined how precisely the genes
identified in our analysis contribute to cytogenetic resistance, one
may speculate that they reflect the evolution of the disease toward
BCR-ABL independence.41 Clearly, additional factors, such as
drug transport proteins, probably play a role as well.31,32 Altogether,
the meta-analysis suggests that chronic patients destined to primary
cytogenetic resistance have more advanced disease than suggested
by morphologic criteria.

In conclusion, we have identified a gene expression profile that
predicts MCyR with a high degree of accuracy. To our knowledge,
this is the first prospectively validated gene expression classifier of
cytogenetic response to imatinib. The ability of the classifier to
identify high-risk patients more accurately than the Sokal score
may allow targeting more intensive therapy to the patients most
likely to benefit.
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