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Constitutive B-cell lymphoma 6 (Bcl-6)
expression was undetectable in multiple
myeloma (MM) cell lines, except U266
cells. However, it was up-regulated by
coculture with bone marrow (BM) stromal
cell-culture supernatant (SCCS). Bcl-6 ex-
pression in patient MM cells in the BM
was positive. Anti–interleukin-6 (IL-6)–
neutralizing antibody significantly blocked
SCCS-induced Bcl-6 in MM cells. Indeed,

IL-6 strongly triggered Bcl-6 expression
in MM cells, whereas Janus kinase inhibi-
tor and STAT3 siRNA down-regulated
Bcl-6. Tumor necrosis factor-� (TNF-�)
also triggered Bcl-6, but independently of
STAT3, whereas I�B kinase� inhibitor
down-regulated TNF-�–induced Bcl-6,
indicating that the canonical nuclear
factor-�B pathway mediates TNF-�–
induced Bcl-6 expression. Importantly,

down-regulation of Bcl-6 by shRNA signifi-
cantly inhibited MM cell growth in the
presence of SCCS. Our results therefore
suggest that Bcl-6 expression in MM cells
is modulated, at least in part, via Janus
kinase/STAT3 and canonical nuclear
factor-�B pathways and that targeting
Bcl-6, either directly or via these cas-
cades, inhibits MM cell growth in the BM
milieu. (Blood. 2010;115(18):3772-3775)

Introduction

B-cell lymphoma 6 (Bcl-6) is a 95-kDa nuclear protein belong-
ing to the Pox virus zinc finger transcription factor family. It is a
proto-oncogene encoding a transcriptional repressor, which
regulates germinal center B-cell differentiation. BCL6 is consti-
tutively expressed in a significant fraction of B-cell lymphomas.
Importantly, Bcl-6 is deregulated either by chromosomal translo-
cations (3q27) or aberrant somatic hypermutation in a subset
(35%-40%) of diffuse large B-cell lymphomas (DLBCLs),1,2

and its biologic significance has been extensively studied in this
setting.3

Bcl-6 function is regulated by acetylation; specifically, histone
deacetylase-2 (HDAC2) binds to Bcl-6 and modulates its function.4

Conversely, inhibition of HDAC2 induces hyperacetylation of
Bcl-6, resulting in loss of its function. Therefore, HDAC inhibitors
(especially class I inhibitors) have been used for functional inhibi-
tion of Bcl-6.5 Most importantly, a small peptide inhibitor of
BCL-6 induces cytotoxicity in primary human DLBCL cells both
in vitro and in vivo, without affecting normal lymphoid tissue,6,7

suggesting that Bcl-6 is a promising novel therapeutic target in
DLBCLs. However, the biologic significance of Bcl-6 in multiple
myeloma (MM) has not yet been elucidated.

Methods

Detailed information pertinent to tumor cell lines and primary tumor
specimens, growth of long-term bone marrow stromal cells (BMSCs),
reagents, immunoblotting, cell growth assays, real-time polymerase chain

reaction (RT-PCR), and shRNA infection are included in the supplemental
data (available on the Blood Web site; see the Supplemental Materials link
at the top of the online article).8-13 Primary CD138� tumor cells from MM
patients were obtained using negative selection, as previously described8

after Institutional Review Board–approved informed consent (Dana-Farber
Cancer Institute) and in accordance with the Declaration of Helsinki
protocol.

Results and discussion

To examine whether patient MM cells in the BM express Bcl-6, we
first performed immunohistochemical analysis on BM tissue mi-
croarrays from both healthy donors (NBM) and MM patients.
Importantly, Bcl-6 was strongly expressed within the nucleus in
MM cells of all cases (Figure 1A), suggesting that Bcl-6 might play
a role in MM pathogenesis. To examine whether soluble factors
modulated Bcl-6 expression in MM cells in the context of the BM
microenvironment, MM.1S and RPMI8226 cells were cultured
with stromal cell-culture supernatants (SCCSs) or BMSCs for
12 hours. Induction of Bcl-6 was similarly up-regulated by SCCS
and BMSC coculture (Figure 2B), suggesting that induction of
Bcl-6 by BMSCs was predominantly by soluble factors, and we
carried out further experiments using SCCSs. Although MM cell
lines express weak or undetectable constitutive Bcl-6 expression, it
is markedly up-regulated by SCCSs (Figure 2C). Because the
pattern of Bcl-6 induction by SCCSs was similar to phospho-
STAT3 and phospho-ERK, we hypothesized that interleukin-6
(IL-6) in SCCSs may be triggering Bcl-6 in MM cells. We therefore
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cultured MM cell lines with recombinant IL-6 and confirmed that
Bcl-6 was markedly up-regulated, as was p-STAT3 (Figure 2D).
Interestingly, U266 has high baseline Bcl-6 and p-STAT3 expres-
sion, which is associated with constitutive phosphorylation of
gp130 (supplemental Figure 1). Dose-dependent (Figure 2E) and
time-dependent (Figure 2F) effects of IL-6 on Bcl-6 expression
showed maximum induction by 4 hours with 3 and 10 ng/mL IL-6.
Importantly, IL-6 also triggered Bcl-6 expression in patient MM
cells (Figure 2G). Real-time RT-PCR showed that IL-6, in a
time-dependent fashion, significantly increased Bcl-6 mRNA lev-
els in INA6 cells (Figure 2H), indicating that IL-6–induced

transcriptional up-regulation of Bcl-6. We also examined the
kinetics of Bcl-6 down-regulation after IL-6 withdrawal. As shown
in Figure 2I, Bcl-6 expression rapidly decreased to baseline levels
at 5 to 10 hours after IL-6 withdrawal.

To define the extent to which IL-6 accounts for SCCS-induced
Bcl-6 expression, we next cultured MM cells with SCCSs, in the
presence or absence of neutralizing anti–IL-6 antibodies. Neutraliz-
ing anti–IL-6 antibodies only partially inhibited SCCS-induced
Bcl-6 and p-STAT3 expression (Figure 2A). Because other gp130
family cytokines also trigger phosphorylation of STAT3 and ERK,
and BMSCs also secrete oncostatin M (OSM; supplemental Figure
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Figure 1. IL-6 in SCCSs induces Bcl-6. (A) Immunohistochemical analysis for Bcl-6 expression was performed on bone marrow (BM) tissue microarrays from healthy donors
(NBM) and multiple myeloma (MM) patients. Representative results are shown. CD138 is stained in red; Bcl-6 is stained in brown. Control sample was stained without
anti–Bcl-6 antibodies or anti-CD138. See supplemental Methods for image-acquisition information. (B) MM.1S and RPMI8226 cells were cultured with stromal cell–culture
supernatants (SCCSs; S) or bone marrow stromal cells (BMSCs; Sc) for 12 hours. (C) MM.1S, interleukin-6 (IL-6)–starved INA6, RPMI8226, and U266 cells were cultured with
SCCSs for 12 hours. (D) MM.1S, IL-6–starved INA6, RPMI8226, and U266 cells were cultured with IL-6 (5 ng/mL) for 12 hours. (E) MM.1S cells were cultured with IL-6
(5 ng/mL) for the indicated time periods. (F) MM.1S and IL-6–starved INA6 cells were cultured with IL-6 (1, 3, or 10 ng/mL) for 12 hours. (G) Patient MM cells were cultured with
IL-6 (5 ng/mL) for 12 hours. (H) INA6 cells were cultured with IL-6 (5 ng/mL for 3 hours and 8 hours) or SCCSs for 8 hours. Total RNA was extracted, and Bcl-6 gene expression
was examined by real-time RT-PCR ( ) and normalized to expression of glyceraldehyde-3-phosphate dehydrogenase (�), which served as an internal control. *P � .01.
(I) INA6 cells were cultured with or without IL-6 (5 ng/mL) for 12 hours. Cells were then washed and cultured for the indicated time periods. Whole-cell lysates were subjected to
immunoblotting with indicated antibodies. Phospho-STAT3 served as positive control for IL-6–induced signal transduction.
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Figure 2. TNF-� up-regulates Bcl-6 expression.
(A) MM.1S and U266 cells were cultured with IL-6
(5 ng/mL) or SCCSs (SC) for 12 hours. (B) RPMI8226
cells were cultured with 3 different SCCS (#1, #2, #3) for
12 hours. (C) RPMI8226 cells were cultured with tumor
necrosis factor-� (TNF-�; 2.5 ng/mL) or IL-6 (5 ng/mL) for
the indicated time periods. (D) Patient MM cells were
cultured with IL-6 (5 ng/mL), TNF-� (2.5 ng/mL), or SCCSs
(SC) for 12 hours. (E) RPMI8226 cells were cultured with
or without SCCSs (S), in the presence or absence of
MLN120B (M, 10�M) for 12 hours. (F) Patient MM cells
were cultured with TNF-� (T) for 12 hours in the presence
or absence of MLN120B (M, 10�M). (G) RPMI8226 cells
were cultured with 3 different SCCSs (sc#1, sc#2, and
sc#3), in the presence or absence of neutralizing IL-6
antibodies (5 �g/mL) or MLN120B (M, 10�M) for 12 hours.
Whole cell lysates were subjected to immunoblotting with
indicated antibodies.
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2), we examined whether exogenous OSM also triggered Bcl-6 in
MM cell lines. As expected, OSM markedly up-regulated Bcl-6
expression in MM.1S and INA6 cell lines, associated with
induction of p-STAT3 (supplemental Figure 3). In contrast,
other cytokines, including insulin-like growth factor-1, vascular
endothelial growth factor, stromal cell–derived factor-1�, or
IL-3, did not induce Bcl-6 expression (data not shown). These
results suggest that gp130 family cytokines trigger Bcl-6
expression in MM cells.

Our studies indicated that phosphorylation of both ERK and
STAT3 is correlated with Bcl-6 expression (Figure 1C). MEK
inhibitor U0126 completely blocked both constitutive and
IL-6–induced phospho-ERK; however, it did not inhibit phospho-
STAT3 or Bcl-6 expression (supplemental Figure 4A). In
contrast, pan-Janus kinase (JAK) inhibitor AG490 markedly
down-regulated phospho-STAT3 and Bcl-6 expression (supple-
mental Figure 4B). We further confirmed the significance of
STAT3 down-regulation using STAT3 siRNA: STAT3 siRNA
transfectants have lower levels of Bcl-6 than scrambled siRNA
transfectants (supplemental Figure 4C). Taken together, these
results suggest that IL-6–induced Bcl-6 expression is modulated
via JAK/STAT3 pathway.

We next examined the impact of IL-6 on Bcl-6 expression in
MM cells in the context of the BM microenvironment by culturing
2 IL-6 responsive of MM cell lines (MM.1S, U266) with SCCSs or
IL-6. IL-6 was a more potent inducer of p-STAT3 than SCCSs;
however, SCCSs more potently induced Bcl-6 than IL-6 in MM.1S
(Figure 2A). We further examined 3 distinct SCCSs and observed
that induction of Bcl-6 by SCCSs was correlated with phosphoryla-
tion of JNK and p38MAPK (Figure 2B). Because we have
previously shown that transcription and secretion of IL-6 by
BMSCs are regulated by nuclear factor-�B (NF-�B)14 and tumor
necrosis factor-� (TNF-�) is a potent activator of NF-�B, JNK, and
p38MAPK, we hypothesized that TNF-� in SCCSs may also
trigger Bcl-6 expression. As expected, TNF-� markedly up-
regulated Bcl-6 in RPMI8226 cells (Figure 2C). This up-regulation
was completely independent of p-STAT3, indicating that IL-6 or
other gp130 family cytokines were not induced by the TNF-�–
NF-�B axis in this setting. Importantly, both SCCSs and TNF-�
also triggered Bcl-6 in patient MM cells even when IL-6 did not
(Figure 2D). We have previously shown that I�B kinase� inhibitor
MLN120B blocks TNF-�–induced NF-�B activation.15 We next
showed that MLN120B completely blocked TNF-�–induced Bcl-6
expression in patient MM cells (Figure 2E) and RPMI8226 cells
(Figure 2F), suggesting that TNF-�–induced Bcl-6 expression is
mediated via the canonical NF-�B pathway. Because secretion
of cytokines from primary BMSCs varies, we further compared
the induction of Bcl-6 in RPMI8226 cells by SCCSs from
3 different persons, in the presence or absence of neutralizing
anti–IL-6 antibodies or MLN120B (Figure 2F). All SCCSs
markedly induced Bcl-6 expression; however, the inhibitory

effect of neutralizing anti–IL-6 antibodies or MLN120B on
Bcl-6 induction varied (Figure 2G). These results suggest that
SCCSs may have different cytokines and that the signaling
cascades triggering Bcl-6 may therefore also differ. These
results indicate that up-regulation of Bcl-6 by SCCS is not
induced by a single cytokine but the total effect of cytokines in
the BM milieu.

To determine the biologic significance of Bcl-6, we next
knocked down Bcl-6 expression by lentiviral Bcl-6 shRNA.
MM.1S cells were cultured with SCCS to induce Bcl-6. Both sh
#1 and sh #2 constructs sufficiently down-regulated Bcl-6
expression (supplemental Figure 5A). Importantly, Bcl-6 knock-
down infectants had decreased numbers of viable cells com-
pared with noninfected or Sc shRNA infectants (supplemental
Figure 5B). Analogous experiments were carried out in U266
cells with high constitutive Bcl-6 expression without SCCSs,
and we observed that Bcl-6 shRNA showed cell growth
inhibition associated with down-regulation of Bcl-6 (supplemen-
tal Figure 6). In this study, our results therefore suggest that
Bcl-6 expression is mediated via both JAK/STAT3 and NF-�B
pathways in MM cells and that targeting these cascades could
both inhibit Bcl-6 expression and inhibit growth of MM cells in
the BM microenvironment.
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