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Scientists have traditionally studied com-
plex biologic systems by reducing them
to simple building blocks. Genome se-
quencing, high-throughput screening, and
proteomics have, however, generated
large datasets, revealing a high level of
complexity in components and interac-
tions. Systems biology embraces this
complexity with a combination of math-
ematical, engineering, and computational
tools for constructing and validating mod-
els of biologic phenomena. The validity of

mathematical modeling in hematopoiesis
was established early by the pioneering
work of Till and McCulloch. In reviewing
more recent papers, we highlight deter-
ministic, stochastic, statistical, and net-
work-based models that have been used
to better understand a range of topics in
hematopoiesis, including blood cell pro-
duction, the periodicity of cyclical neutro-
penia, stem cell production in response
to cytokine administration, and the emer-
gence of imatinib resistance in chronic

myeloid leukemia. Future advances re-
quire technologic improvements in com-
puting power, imaging, and proteomics
as well as greater collaboration between
experimentalists and modelers. Alto-
gether, systems biology will improve our
understanding of normal and abnormal
hematopoiesis, better define stem cells
and their daughter cells, and potentially
lead to more effective therapies. (Blood.
2010;115:2339-2347)

Introduction

Despite advances made in identifying genes, epigenetic modifiers,
lipids, proteins, and their posttranslational processing, much re-
mains unknown about the precise roles these components play in
health and disease. That biologic processes are complex and
dynamic has been clearly established, albeit underappreciated.1

One obstacle to a more complete understanding is that reduction-
ism dominates biologists’ thinking. Reductionism states that a
problem can be solved by decomposing it into building blocks and
studying them one at a time.2 Large datasets of genes, lipids,
metabolites, and proteins have made it impossible for one to intuit,
reinforcing the appeal of reductionism. Yet, by breaking down a
system one may lose properties that emerge only by virtue of the
system’s complexity. Systems biology approaches embrace this
complexity, using engineering principles and computational meth-
ods to build and validate models using experimental data (Table
1).3 Using these and other approaches, systems biology seeks to
explain and predict the complex properties underlying normal and
abnormal physiology.

Biologic systems are multiscalar, functioning at the molecular,
cellular, tissue, and organismismal levels. To perform their special-
ized functions, highly differentiated blood cells are continuously
produced by stem cells. A combination of more than a dozen
growth and stromal factors drive cells to divide asymmetrically,
undergo differentiation, and carry out their end-cell functions.
More than 10 000 genes are expressed in a B-cell lymphocyte.4 A
simple erythrocyte, enucleated and without mitochondria, contains
more than 750 proteins, ignoring posttranslational modifications.5

With at least a dozen types of highly specialized cells and platelets
circulating in a liquid phase consisting of 1000 proteins,6 blood and
its elements comprise a complex system. Inherently dynamic, the
system must respond quickly to a variety of infectious, inflamma-

tory, and metabolic conditions yet still preserve overall stability.
While hematologists diagnose and treat patients with hemolytic
anemias, phagocytic deficiencies, hypercoagulability, lymphoprolif-
erative diseases, and myelodysplastic syndromes, it is astonishing
that such high-level quality control of blood and its elements exists
and that blood diseases are not more common.

We will introduce key concepts, terms, and models of systems
biology (for a glossary, see Appendix at the end of the article) and
discuss how systems biology is enhancing our understanding of the
pathophysiology and treatment of blood disorders. More in-depth
coverage may be found in the few textbooks of systems biology
and bioinformatics that have appeared, none solely devoted to
medical topics.7-10

Types of mathematical models

Many methods of modeling are available to more completely
describe and predict biologic processes. Deterministic models
describe the state of a system over time in the absence of random
phenomena; such models always generate the same output for a
given input.11 By contrast, stochastic models are used to understand
the effects of randomness and noise on system output.12 Statistical
models do not require in-depth knowledge of system structure and
use existing data to estimate the functional relationship between
system input and output. Network models describe the direction
and magnitude of interactions that exist between the various
components in a system.13

Deterministic models usually consist of 1 or more differential
equations, with each equation describing the change in a system
state variable over time, as it depends on other system variables and

Submitted August 26, 2009; accepted November 25, 2009. Prepublished
online as Blood First Edition paper, January 26, 2010; DOI
10.1182/blood-2009-08-215798.

© 2010 by The American Society of Hematology

2339BLOOD, 25 MARCH 2010 � VOLUME 115, NUMBER 12

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/115/12/2339/1487778/zh801210002339.pdf by guest on 02 June 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2009-08-215798&domain=pdf&date_stamp=2010-03-25


rates. If the state variable of interest is the number of cells in the
population, a differential equation modeling the change in the
population over time would consist of the difference between rates
of cell production and rates of cell loss:

dNX

dt
� (Rate at which precursor of X differentiates into X)

� (Rate at which X differentiates into next cell in lineage)

� (Rate at which X dies)

where NX is the number of cells of type X.
Each equation describes the rate of change in the number of

cells of given type and maturity in the system by including terms
for the rates of cell production, death, and differentiation. Once the
equations are established they are solved either analytically or
numerically to determine the population’s functional dependence
on time. In models describing physiologic conditions the equations
tend toward a steady-state solution representing system homeosta-
sis; that is, after sufficient time has elapsed, positive and negative
contributions to cell number balance and the population attains a
constant level (eg, dNX/dt � 0 in equation 1). For disease-state cell
populations, other types of behavior such as oscillations, uncon-
trolled proliferation, or extinction are frequently modeled.

Stochastic models are used to examine the effects of intrinsic
and extrinsic randomness on a system. Intrinsic randomness arises
from interactions of a finite (“small”) number of discrete compo-
nents, for example, binding of a given gene’s promoters (2 copies
per diploid genome) by transcription factor molecules (also a
limited number). Extrinsic randomness arises either from variabil-
ity (genetic and phenotypic) among cells or from environmental
fluctuations. The most common type of stochastic model is a
Markov process, in which the future state of the system depends
only on its current state and is independent of its past states. Monte
Carlo simulations are an empirical method to investigate dynamics
of a stochastic system, by generating repeated random trajectories
and computing frequencies that estimate probability distributions.

Statistical models are sometimes confused with stochastic
models. Whereas stochastic models reflect the structure of the
biologic system, statistical models are data-driven. Statistical
models can be used even when no knowledge about a system’s
structure exists and can generate predictions, which may be only
statistically validated. However, some statistical models such as
Bayesian networks may provide insights concerning the structure.
Bayesian network models are built from graphs in which the states
of and relationships between network elements are probabilistic.
While graph theoretical models can be circular, Bayesian networks
have a definite, distinct set of termini. These models have a wide
range of uses. For example, a Bayesian network model could be
used to predict the probabilities of certain cellular mutations based
on abnormalities in protein expression levels (assuming, of course,
that there is a relationship between the two). Their structure and

necessary constants have to be estimated based on data. Although
popular, Bayesian networks suffer from the possible reversal of
causality.14

Network models have recently gained popularity in the social,
physical, and biologic sciences from the widespread application of
graph theory, an area of mathematics that investigates the relation-
ships between the objects of a group (an example is shown in
Figure 1).16 Graph theory lends itself to visual representations
making it an appealing tool for biologists investigating phenomena
ranging from the interactions between populations in an ecosystem
to the interactions between molecular species involved in a
signaling pathway. At its simplest, a graph is a map of all known
system components or system states and their possible interactions
or transitions. Circles (nodes) represent components and states, and
lines and arrows (branches or edges) represent relationships
between nodes. Graphs help portray topologic structures such as
loops (Figure 2). Complex dynamics can arise from relatively few
interacting components,17 and network maps are widely used to
help visualize the interactions. Building upon existing graph
theoretical notation, an international group has developed Systems
Biology Graphical Notation to standardize the visual representa-
tions used to describe biologic interaction networks.18

Systems properties in hematopoiesis

Because of the physical facility in sampling blood or bone marrow
repetitively and quantitatively, the blood system is well-suited for
modeling and validation. Hematopoiesis and the functioning of
specialized blood cells involve complex processes that can be
examined at the level of genes,19 signal transduction proteins,20 or
the population distribution of diverse cell types.21 Both determinis-
tic and stochastic processes contribute. By viewing hematopoiesis

Figure 1. Graph of protein-protein interaction. (A) The network of the
1548 proteins of the yeast proteome and their interactions.15 Proteins with different
functions are represented by different colors and include lipid metabolism (yellow),
cell structure (green), membrane fusion(blue), chromatin structure(gray), and cytoki-
nesis (red). (B) Because of node and edge density, a subset of the network is
magnified to reveal the complexity of components and interactions. (Figure from Uetz
et al15 reprinted with permission from Nature.)

Table 1. Framework for systems biology

Framework

1. Define all of the components

2. Systematically perturb and monitor components of the systems

3. Reconcile the experimentally observed responses with those predicted by the

model

4. Design and perform new perturbation experiments to distinguish between multiple

or competing model hypotheses

Ideker et al.3
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(cell proliferation and differentiation) as a dynamic system and
disease as perturbations of the system, one can learn more about
both disease and physiologic states.

Proliferation and loss are fundamental properties of hematopoi-
etic stem cells and their progeny. Population dynamics offers a
quantitative approach in studying them. Asymmetric division
results in a stem cell dividing into either another stem cell or a more
committed cell, while symmetric division yields either 2 stem cells
or 2 differentiated daughter cells. These processes can be combined
in a series of short steps.22-25 Models built around these division
(a)symmetries usually result in exponential cell growth, but such
growth cannot be realistically sustained in vitro due to spatial and
nutrient limitations. Models based on heterogeneous population
account for cell proliferation and loss due to death or differentia-
tion. A recent model for hematopoietic reconstitution following
bone marrow transplantation posits 3 possibilities: (1) regulated
proliferation with fixed self-renewal, (2) regulated stem cell
renewal with fixed proliferation, and (3) regulated proliferation and
self-renewal rates are variable.26 This model predicts that cytokine-
dependent self-renewal rate of hematopoietic stem cells is the most
essential in hematopoiesis. Arino and Kimmel considered a configu-
ration in which the erythropoietin (long-range) feedback competes
with the stem-cell (local) feedback, the purpose of which is to
preserve the stem-cell pool. This system may exhibit normal
homeostasis, oscillations, or permanent reduction of red cells
supply, corresponding to chronic anemia.27

Differentiation is the other fundamental property of hematopoi-
etic progenitor cells and requires critical processes of cell-fate
decision-making. Decision making occurs as a result of biochemi-
cal signaling and gene regulatory networks within the cell.28,29

Ultimately, transcription factors determine cellular differentiation
and specialization.30 The relative contributions of instructive and
permissive programming in hematopoiesis have long been de-
bated.23,31-42 To describe hematopoietic stem cell renewal and
differentiation, deterministic and stochastic models have been
constructed (Figure 3A). James Till, a biophysicist, and Ernest
McCulloch, a physician, pioneered the study of hematopoiesis in
the early 1960s through their development of a quantitative spleen
colony assay, establishment of a hematopoietic stem cell, and data
analysis that yielded a stochastic model of hematopoiesis.43,44 In
their stochastic model,22 cells have 2 possible fates: (1) differenti-
ate and leave the proliferative compartment or (2) undergo

symmetric division forming 2 colony-forming cells. Each fate was
assigned a probability. Drawing random numbers to determine the
fate of each cell, Till and McCulloch calculated the diversity of
stem cell populations after the course of several generations. Figure
3B shows the results of 2 different 6-generation simulations. The
first simulation ends with 2 colony-forming cells and 5 differenti-
ated cells whereas the second simulation ends with 10 colony-
forming cells and 1 differentiated cell. The results appear entirely
random between individual simulations but compiling the results of
many simulations shows that some outcomes are more likely than
others. Hence, colony generation appears as a well-defined process
even though individual cell-fate decisions are random. Regulation
acts at the population, not cellular, level and the population of stem
cells can be affected by influencing processes that define the
effective probabilities of birth and death. Forty years later, the
Albert Lasker Award for Basic Medical Research was given to Till
and McCulloch. Their mathematical model continues to serve as
the paradigm for hematopoiesis.

The discoveries of lineage-specific cytokines and transcription
factors as master switches have reduced the appeal of stochastic
models of hematopoiesis. Continuous imaging of single cells, such
as granulocyte-macrophage progenitors, supports instructive roles
for cytokines such as macrophage colony-stimulating factor and
granulocyte colony-stimulating factor (G-CSF).45 Using a stochas-
tic approach, Abkowitz and coworkers used Monte Carlo simula-
tions of branching process46 models alongside data from murine,

Figure 2. Feedback and feedforward loops in biologic systems. (A) Positive
feedback loops result when (x) leads to the production of (y), which up-regulates the
level of (x). (B) Negative feedback loops result when (x) leads to the production of (y)
which down-regulates the level of (x). (C) Feed-forward loops are often found in
biochemical or genetic regulatory networks. An example involves a general (x) and a
specific (y) gene activator. The general activator sends an activation signal to the
target gene (z) and the specific activator (y). If the signal is sustained, (y) becomes
activated, permitting it to reinforce an activation signal for (z), completing the gene
activation process. Once the signal from (x) stops, (z) ceases to be activated. The
2-step activation process is ideal for noisy systems where random fluctuations in the
signal from (x) are less likely to cause activation of the gene (z) because of the
signaling delay via (y).

Figure 3. Deterministic and stochastic processes in hematopoiesis. (A) In the
deterministic model, hematopoietic growth factors such as Epo, G-CSF, macrophage
colony-stimulating factor (M-CSF) instruct differentiation of blood stem cells. (B) In
the stochastic model, these growth factors as well as others such as interleukin-3
(IL-3) or stem cell factor (SCF) promote survival, allowing stem cells to differentiate.
(C) Results of 6-generation stochastic cell-fate simulations. A pluripotent stem cell
can either divide into 2 stem cells or differentiate, losing its proliferative capacity.
Simulations were run using a random number generator. The probability of birth was
60%, death 40%, the decision for each cell was performed by picking a random
number 0 to 9 with 7 of these numbers (0-5) resulting in symmetric division and 3 (6-9)
resulting in stem cell loss due to differentiation. Starting with 1 cell and drawing
random numbers for each stem cell present in each generation leads to very different
final populations, illustrating the randomness a stochastic model can incorporate.
(Figure modified from Till et al22 with permission from Dr Till.)
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feline, and nonhuman primate models of early hematopoi-
esis.38,47-53 In this approach, telomere shortening is used as a
cellular clock to measure the rate at which hematopoietic stem cells
divide.51 This group’s results suggest that the number of hematopoi-
etic stem cells across different mammalian species is approxi-
mately evolutionarily conserved, a claim that has implications for
our current understanding of human hematopoietic stem cell
concentrations.54 Ultimately, the utility of stochastic as opposed to
deterministic models depends on the level at which hematopoiesis
is observed. For large cell numbers, such as the number of
committed precursors in normal hematopoiesis, an averaged deter-
ministic approach may be sufficient to capture the behavior of
interest. However, tracking rare events such as malignant transfor-
mations may require a stochastic model that allows for the
occurrence of random events (also referred to as stochastic) with a
certain probability.55

Signaling and gene regulatory networks

A cell uses complex intracellular signaling and gene regulatory
networks to integrate the multiplicity of cues in its environment and
to ultimately make a specific decision. In particular, gene regula-
tory networks have provided great insights into lineage commit-
ment of hematopoietic progenitors. Huang and associates observed
that neutrophil differentiation of HL60 cells was a multistep
process in a high-dimension system.56 In a follow-up paper, they
showed that single cells of a bipotential cell line were heteroge-
neous and possessed a differentiation potential that correlated with
high-level expression of PU.1 in Sca1high cells and GATA-1 in
Sca1low cells. These studies provided evidence of stochastic noise
in lineage decisions.41 On the other hand, Laslo and coworkers
have used both experimental and computational approaches to
examine how transcriptional priming can affect macrophage versus
neutrophil fate specification in myeloid progenitors.57 Consistent
with previously published work on the relative contributions
played by PU.1 and CEBP/� in directing macrophage versus
neutrophil differentiation, their deterministic model consists of
several ordinary differential equations (ODEs), each describing
changes in protein concentration as a function of gene repression
and activation. Solutions to the equations indicate either the
monostable or bistable production of macrophages and neutrophils,
with the population composition dependent upon relative synthesis
rates of several transcription factors. For rates resulting in bistable
states, cell fate is a stochastic process. Enver and colleagues also
used a combined computational/experimental approach to study the
bifurcation dynamics in commitment of progenitors to either the
erythroid/megakaryocytic lineage or the myelomonocytic lin-
eage.42 These gene regulatory networks interface with the cell’s
external environment through signaling networks, and links be-
tween cell-extrinsic and cell-intrinsic cues can provide important
insights into the external regulation of commitment decisions.40,58

A critical area for future study in systems biology of hematopoiesis
is the elucidation of molecular mechanisms and signaling topolo-
gies that link extracellular cues with gene regulatory networks that
ultimately drive cell-fate decisions. Zandstra and colleagues have
expanded the classical systems biology approach of intracellular
signaling to incorporate intercellular communication. Through
integration of computational modeling and quantitative experimen-
tation, they demonstrated that feedback signaling not only can
regulate cell fates in homeostasis but also can play a role in
leukemic transformation.29

Stress and disease as systemic perturbations

Hematopoiesis must be dynamically regulated to meet environmen-
tal stimuli such as infection, hypoxia, or bleeding and to ensure
survival of the organism. Inflammation induced by infectious
agents involves a network of cytokines, released locally and
systemically.59,60 Neutrophils and macrophages provide a frontline
of host defense, quickly recruited by soluble mediators released by
both host and foreign agents (such as bacterial lipopolysaccha-
rides). The bone marrow must also respond rapidly by increasing
neutrophil production and their exit.61 Control processes at the gene
level also involve negative regulation of inflammation.62,63 Hyp-
oxia induces the transcription factor hypoxia-inducible factor-1,
which rapidly induces a 3-log increase in levels of erythropoietin
(Epo).64 During stress, the Epo receptor signaling down-regulates
erythroblast Fas and FasL, increasing erythropoietic rate by
affecting apoptosis.65

When hematopoietic cells misinterpret environmental cues or
defects arise internally, normal homeostasis is lost and blood
counts can markedly change or fluctuate. Cyclic neutropenia (CN)
and a few anemias are characterized by periodic oscillations in
blood cell counts.66,67 Mathematical modeling of dynamics of these
disorders was used to illuminate their pathophysiology, although
the biologic feedback generating the periodic, quasi-periodic, or
chaotic basis observed (quality of the data does not allow to
distinguish among these 3 possibilities) remains obscure.67,68 Some
models of cyclic neutropenia suggest that the abnormality lies not
in the feedback loop but in an elevated neutrophil apoptotic rate
that perturbs the normal regulation of stem cell dynamics.69 These
models are all deterministic, yet they differ in the number of
quantities tracked by separate equations, the number of parameters
included, and the types of equations used, for example, ordinary,
partial, or delay differential equations.

Lasota and Wazewska-Czyzewska developed the first mathemati-
cal model of erythroid production.70 They suggested that decreas-
ing the rate of erythroid precursor maturation increases the
steady-state level of nonproliferating erythroid cells. A patient
would quickly recover red blood cell levels following treatment-
induced anemia. Since erythroid precursor maturation rate in-
creases with Epo levels, which are negatively correlated with blood
oxygen content, the model suggests that by increasing a patient’s
blood oxygen level one can accelerate the rate of erythrocyte
recovery following chemotherapeutic insult or radiation therapy.
This conclusion was successfully validated in patients.71

A collaborator of theirs, Mackey has been modeling cyclical
hematologic diseases.72 One of his models of erythropoiesis
incorporates apoptosis and the effect of cell maturation on popula-
tion dynamics.73 The generalized model divides cells into 2 popula-
tions, precursors and mature cells, with precursors maturing at a
certain velocity dependent upon Epo concentration, and mature
cells dying at a constant rate. The age-structured erythrocyte
population is determined by a set of 5 partial differential equations
with accompanying boundary conditions. Focusing on system
behavior at long times allowed Mahaffy to turn the generalized
equations into threshold-delay differential equations.74 Stability
analysis was performed on the system of equations, and simula-
tions were run to test the model’s agreement with experimental
measurements. One of the simulations examines the erythrocyte
population’s response to a blood donation of 5% by volume. In that
case, the concentration of Epo increases rapidly in response to
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blood loss and the erythrocyte population is restored to its normal
level after 18 days, close to the accepted range of 3 to 6 weeks.75

The model was also tested to determine whether it could reproduce
the oscillatory effect of induced autoimmune hemolytic anemia on
the erythrocyte count of a rabbit (Figure 4). While the magnitude
and period of the oscillation peaks vary over time for the
experimental data, the model provides an imperfect but strong
means for estimating erythrocyte maturation and destruction rate.
The model has been modified and applied to cyclic neutropenia and
thrombocytopenia, with the former validated in neutropenia found
in gray collies.76

Population-based models have been developed to expand our
understanding of leukemogenesis. In 1975, Rubinow and Lebowitz
published some of the first papers on mathematical modeling of
neutrophil production in man and applications to acute myeloblas-
tic leukemia.77-79 Based on partial and delay differential equations,
Adimy and Crauste developed an age-structured model of hemato-
poiesis and applied it to chronic myeloid leukemia (CML).80 The
equations describe the rates of change of the densities of the
populations of proliferating and nonproliferating cells, and their
dependence on the concentration of intercellular growth factors,
one that influences apoptosis and another that affects stem cell
proliferative capacity. The population densities are functions of
both time and age, where age is the time a particular cell spends in
either the proliferative or nonproliferative compartment. A feed-
back loop is involved in stem cell proliferation that, when
destabilized, leads to oscillations in stem cell population density.

In an effort to bridge the gap between theoretical modelers and
experimentalists, Bessonov et al built software based around a
basic model of hematopoiesis and leukemogenesis in the bone
marrow.81 The software allows the user to adjust many parameters
including the bone marrow’s fixed stem cell density, the possible
cell types and their order of differentiation, probabilities of
differentiation, differentiation rates, and proliferation rates.
Bessonov et al tried varying parameters at random and reviewed
the resulting scenarios: (1) the leukemic cells were too few or
proliferated too slowly and were washed out of the marrow by the
normal cells, (2) the leukemic cells proliferated rapidly and took
over the bone marrow, or (3) the rate permitted the bone marrow’s
leukemic stem cell population to oscillate with a period dependent

upon the relative parameter values. Interestingly, the oscillations
approximated those seen in CML and CN patients.

Clinical applications

Modeling may be applied to improving drug therapeutics and
predicting drug resistance (and trying to prevent it). G-CSF is the
most important cytokine to promote the production of neutro-
phils82,83 and has been used clinically to ameliorate chemotherapy-
associated neutropenia or congenital neutropenias and mobilize
peripheral stem cells. Mathematical models have been developed to
describe the dynamics of G-CSF administration with the dual
purpose of predicting an elevation in neutrophils in response to
particular administration schedules and gaining insight into the
function of hematopoiesis in general. Obeyesekere et al constructed
a population dynamics model of hematopoiesis that considered
peripheral blood cells and the interactions between differentiated
stem cells; their simulations showed good agreement with clinical
data and made valuable predictions regarding the treatment of
neutropenia and thrombocytopenia.84 The model treats the bone
marrow and the peripheral blood as 2 separate compartments and
distinguishes between 4 cell types: bone marrow stem cells, CD34�

cells, white blood cells, and platelets (Figure 5). Based on
parameters that are clinically measureable, the model consists of 5

Figure 5. Population dynamics model for G-CSF mobilized peripheral stem cells.
(A) A compartment model for stem cell mobilization. This model describes the G-CSF
concentration (G) in the microenvironment and 4 different populations of cells in the bone
marrow and peripheral blood: stem cells (S), peripheral blood cells (B), white blood cells
(W), and platelets (P). Other parameters that the model incorporates are as follows: aG, aP:
the production rates of G-CSF and platelets. aS(G), aw(G): The production rates of stem
cells and white blood cells as functions of G-CSF concentration. f1, f2, f3: Rates at which
stem cells, white blood cells, and platelet concentrations down-regulate the stem cell
production rate. f4: Rate at which white blood cell concentration down-regulates G-CSF
production. dG, dB, dW, dP: The rates of destruction of G-CSF, peripheral blood progenitor
cells, white blood cells, and platelets. TL: The population of progenitor cells in the bone
marrow. TSB: The population of stem cells passing from the blood to the bone marrow. TBS:
The population of stem cells passing from the bone marrow to the blood r(G). (B) Stimula-
tion of G-CSF treatment every day over a 9-day period shows a rapid increase in white
blood cell count (solid line) with each treatment (dotted line).After 5 days, further treatments
have no effect on total white blood cell count. Once treatment has stopped (day 10), white
blood cell counts slowly decline, returning to pretreatment levels. (Figure from Obeyesekere
et al84 reprinted with permission from Wiley-Blackwell.)

Figure 4. Cyclical hematopoiesis. A deterministic model for cyclic erythropoiesis
was constructed from experimental data derived from a rabbit with auto-immune
hemolytic anemia. The model describes periodic changes in Epo levels as a result of
feedback loop with erythrocyte mass. The solid lines represent model predictions and
the dashed line represents experimentally obtained erythrocyte counts. (Reprinted
from Mahaffy et al73 with permission from Elsevier.)
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differential equations, each describing the rate of change of 1 of the
4 cell types, with the fifth describing the G-CSF production/
clearance rate. Three feedback loops were postulated. Parameter
values were chosen based upon known properties of hematopoiesis.
The equations were solved numerically and simulations of clini-
cally relevant scenarios were run to ensure that the model’s output
agreed with experimental data, thus validating it and opening it for
use as a predictive tool. The first test of the model was to ensure
that it accurately represented blood cell recovery rates. For the case
of CD34� cell donation by a healthy person, the model agrees with
experimental results for all cell types except platelets. The model
accurately describes the effect of G-CSF saturation, where more
than a certain number of injections of G-CSF have no immediate or
long-term affect on neutrophil count. The model also predicts that
injections of CD34� stem cells can be used following chemothera-
peutic assault to hasten recovery and significantly reduce the
symptoms associated with neutropenia and thrombocytopenia.
However, levels are not constant but actually oscillate about a
constant level depending on a series of factors.85 By experimentally
characterizing these oscillations and explicitly including them,
future models might provide a better fit to clinical data.

Shochat also developed a model describing the effects of
different G-CSF administration schedules on neutrophil dynam-
ics.86 Similar to Obeyesekere’s, Shochat’s model uses 6 easily
obtainable parameters, making it clinically valuable. The model
consists of 2 differential equations, each describing the rate of
change of granulocyte count and neutrophil count, along with
several constraint equations that encode known physiologic
properties of G-CSF/neutrophil dynamics. One of these con-
straint equations encodes the observation that the rate of G-CSF
production, under basal conditions, is independent of G-CSF
levels and represents a smooth function that decreases slowly as
the blood neutrophil count decreases. Another encodes the fact
that blood neutrophil levels increase with G-CSF levels. The
equations are studied and solved and it is mathematically proven
that, given the equations and associated physiologically defined
constraints, there is exactly 1 structurally stable solution. Thus,
small changes to the input parameters result in small changes in
the output values, for example, a small change in the blood’s
G-CSF concentration changes the neutrophil production rate by
a small amount.

The functional forms of the model’s 4 rate factors—the rate of
G-CSF production in the blood, the rate of neutrophil production,
G-CSF clearance, and neutrophil death rates—are selected such
that the functions obey the various constraints set out with the main
model equations. If the functions are kept simple it is possible to tie
predictions of the model to their biologic origins. Shochat chose the
Michaelis-Menten approximation to determine kinetic rate terms
and searched the literature for values for the model parameters and
used numerical methods to estimate the remaining unknown
values. An example of how this model can be applied can be found
in elevated neutrophil counts in patients with CML. Two parame-
ters can be tweaked to increase the neutrophil count: neutrophil
death rate and the minimum neutrophil birth rate. By decreasing the
former, significantly increasing the latter or a combination of the 2,
one can reproduce the neutrophil counts measured in CML patients.
This model suggests that a potential treatment for CML could target
either of these rates. Imatinib accomplishes this by targeting
BCR-ABL, which decreases a leukemic cell’s ability to resist
apoptosis, thereby increasing the death rate.87

The mathematical form of Shochat’s model also suggests that
when trying to increase neutrophil counts, it is far more efficient to
decrease the clearance rate of G-CSF than to increase dosage size
or dosage frequency. A PEGylated form of G-CSF has been
synthesized to reduce its degradation rate. Sarkar and Lauffen-
burger formulated a mathematical model describing G-CSF/G-CSF
receptor dynamics at the cell level, including the role of endocytic
trafficking and ligand depletion, and integrated this into a larger
pharmacokinetic/pharmacodynamic model. The model predicted
that a G-CSF analog that effectively eliminates clearance (eg,
PEGylated G-CSF) would have a significantly longer half-life in
vivo and improve peripheral neutrophil counts. This type of model,
which correlates the molecular and pharmacologic properties of a
drug, may aid in the design of other protein therapeutics.88

A third deterministic model of granulopoiesis incorporates 3
intracellular secondary messengers that mediate the effect G-CSF
has on cell replication and maturation rates.89 Transcription factors
act at this step so the incorporation of secondary messengers is not
without merit.42 The model consists of a combination of several
ordinary differential equations that track the population dynamics
of G-CSF, neutrophils, and free and bound G-CSF receptors, and
partial differential equations that incorporate the age structure of
the population due to active cell cycling. The model is unique in
that it was the first to consider the effect microenvironment
feedback has on the fate of G1 cells. Experiments involving
radiolabeling of granulocytes and different G-CSF administration
schedules validated the model. Simulations were in excellent
agreement, accurately predicting a steady-state G-CSF receptor-to-
neutrophil ratio of 2200, and an apoptotic rate of 57%.69 In
addition, the model suggests that the secondary messenger is
directly involved with an increasing G-CSF clearance rate associ-
ated with frequent G-CSF injections.

For a given chemotherapy drug, there is always at least a small
population of cancer cells that will exhibit drug resistance and
whose growth is kept in check by the more populous, nonresistant
cells.90,91 In killing the nonresistant cells, therapy removes a
selection pressure and allows resistant clones to proliferate. Adap-
tive therapy is aimed at more heterogeneous cancers for which both
the rate of cell mutation and thus treatment failure are high.
Gatenby reasons that by maintaining a small population of
cancerous cells one can indirectly suppress the overgrowth of
less-fit treatment-resistant cells and thereby improve a patient’s
survival outlook. Both mathematical and experimental mouse
models confirm this hypothesis.90

CML provides an excellent model to study drug resistance.
Imatinib blocks the tyrosine-kinase activity of BCR-ABL,
resulting in the reduction of leukemic progenitor and differenti-
ated leukemic cell counts beyond limits of detection. Michor et
al developed a deterministic model of hematopoiesis in CML to
examine the response of leukemic stem cells to treatment with
imatinib and the dynamics of resistance emergence in its
presence.92 The model considers the change in number of
normal stem cells, progenitors, differentiated, and terminally
differentiated cells, and their leukemic, resistant, and nonresis-
tant counterparts. They concluded that the rate and degree of
CML progenitor rebound following cessation of imatinib treat-
ment indicates that imatinib does not reduce the number of
leukemic stem cells but acts by eliminating progenitors. Further
work also suggests that the decrease in leukemic cell burden is
biphasic, with a rapid decline in the first few months of
treatment followed by a slower decline over the next 6 months.
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Future challenges

The success of systems analysis of hematopoiesis will depend upon
technologic breakthroughs and collaborations between the biologic
and physical sciences that yield accurate predictions and emergent
properties. With each discipline using a different language, this is
easier said than done. Changes in undergraduate, graduate, and
medical curricula must be implemented to train a new generation of
biomedical researchers fluent in quantitative or engineering disci-
plines.93-95 Systems biology requires a balance between models
sufficiently complex to describe a system and yet simple enough to
be clinically useful. Understanding large quantities of data well
enough to validate a model is especially challenging. The develop-
ment of Systems Biology Markup Language (SBML) has made it
easier to develop biology-oriented software packages, such as
COPASI, Simmune, MetaCore, and Cytoscape, which aid model
building and data analysis.18,96-99 Since 2001 the number of such
packages developed for systems biology has grown from 5 to more
than 170. With computational power becoming ever greater and
cheaper, the number and diversity of such software packages will
only increase, bringing within their scope models that may not be
impossible to validate with current technology. At present, most
models of hematopoiesis are built at a single scale, for example,
cellular or molecular. The future lies in building models that span
multiple scales, incorporating more of the connections that exist
between them and thereby being able to account for some of the
complexity that arises from the connections. Among the fundamen-
tal questions in normal and leukemic hematopoiesis that systems
biology will address are: integration of signaling pathways, cir-
cuits, and networks that determine cell fate, multiscale modeling of
stem cell plasticity, synthesis of genetic and epigenetic data, global
analysis of phosphoproteins, dynamics of hematopoiesis in the
bone marrow microenvironment presented in 3-dimensional imag-
ing, and cellular engineering to expand selective blood cell
compartments for therapy. The complexity or density of experimen-
tal data will demand a systems approach.
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Appendix: Glossary

Analytical solution: A solution to an equation or set of equations that can
be explicitly written in terms of known functions and constants (ie, in
“closed form”).

Bayesian network: A statistical model in a form of a tree based on
existing data that correlates values of given input parameters with
probabilities of certain outputs.

Bistability: A property of 1 or more equations for which 2 stable
solutions exist. The existence of multiple stable solutions is known as
multistability.

“Black box” model: A model that aims to determine the functional
relationship between known system input and output when the specifics of
the system structure are unknown. “Black box” models are often built from
existing data using some form of regression analysis.

Boolean network: A directed graph where nodes can take 2 possible
states (1 or 0) and edges represent causal relationships between nodes. The
state of a given node depends on the states of its input nodes through a logic
(boolean) function that specifies the causal relationship between nodes.
Boolean networks are often used to model genetic regulatory networks in
which nodes are genes that can be active or inactive depending on the states
of the genes (or gene products) that regulate them.

Deterministic model: A model in which future states are fully
determined by the past and present states, frequently built using differential
equations.

Edge: A line or arrow between 2 nodes in a graph that indicates a
relationship between elements in the system.

Emergent properties: Properties of a system that arise from the
interactions among its components that cannot be deduced from their
individual behavior.

Empirical model: A nonmechanistic model that shows good agreement
with existing experimental data and can be used to predict outcomes in
separate but similar datasets.

Feedback loop: A loop structure in which the output signal B produced
by an element upon receiving an input signal A is also an input signal to the
element generating signal A producing a down-regulation/up-regulation of
signal A.

Feed-forward loop: A loop structure in which 2 signals generated by a
system element converge on an element downstream from this origin.
Feed-forward control can either speed up a system’s dynamics or destabi-
lize it.

Graph: A collection of nodes and edges that indicate relationships
between nodes. Edges can be directed or undirected. Graphs (or networks)
are a useful representation of a system in which each node corresponds to a
functional element of the system (eg, state of a molecule, protein, or gene)
and an edge represents the relevant interactions between functional units
(eg, conformational changes, physical interactions, or regulatory interac-
tions). Graph and network are often used interchangeably in systems
biology literature and have acquired essentially the same meaning.

Hysteresis: A property that arises from the existence of multiple stable
states/solutions in which the system can get trapped depending on its
previous history.

In silico: A term used in reference to systems created, solved, or
simulated using a computer.

Loop: A structure in a graph or network that is characterized by a
cyclical relationship among system elements.

Mechanistic model: A model that describes the physical processes that
give rise to observed properties of the system. Variables and parameters of
the system correspond to physical quantities and rates that can be measured
empirically.

Michaelis-Menten kinetics: A mechanistic description of the rate of
product formation in an enzymatic reaction that is based on the law of mass
action but assumes that the concentration of the enzyme-substrate complex
intermediate is essentially invariant during the timescale of interest. The
enzyme and substrate bind to form a complex at a rate k1, dissociate back
into reactants at a rate k�1 and turn from a complex to products and enzyme
at a rate k2.

E � S^
k � 1

k1

ES3
k2

E � P

The Michaelis-Menten equation describes the rate of the reaction and is
written as,
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�0 �
�max[S]

KM � [S]

where v0 is the initial reaction rate, vmax is the maximum reaction rate, and
KM�(k�1 � k2)/k1, the rate of complex dissociation and product production
relative to the rate of complex formation.

Monte Carlo simulation: A widespread method used to obtain
observable quantities that depend on random variables whose probability
distributions are known. MC methods can be used to introduce stochasticity
into a model but are also used to sample the parameter space of
deterministic models.

Network: See definition of Graph.
Neural network: A computational framework used to make predictions

of an output quantity given some inputs. In a neural network the internal
elements (or neurons) are connected to each other with different weights
such that the correlation between predicted and known outputs for a specific
training set of input signals is high. Neurons and weights do not represent
any real process happening in the system thus neural networks are useful
when internal relationships between model components are unknown.

Node: Element of a graph or network that is used to represent a
functional entity or interacting unit within a system (eg, a protein or
transcription factor in a signaling network, a molecular species in a
chemical reaction).

Noise: Randomness that is an inherent part of a system.
Numerical solution: Computationally determined solution to an equa-

tion or system of equations, typically necessary when an analytical solution
is intractable. A numerical solution is approximation of the closed-form
solution, but it can be calculated to any desired level of precision, given
enough time and computational power.

Principal component analysis (PCA): Statistical analysis technique
aimed at determining which parameters of a model have the largest impact
on model output. PCA can be used to examine the effect of varying multiple
parameters at once on one or more functions of output parameters. PCA is
useful when trying to identify a minimal set of transformed variables, or
principal components, that can account for most of the variability in a
dataset.

Regression analysis: A method used to determine the functional
relationship between a system’s output and one or more input parameters.
Linear regression models are the most common form of regression analysis.
In such models the function is assumed to be a linear combination of the
input parameters. Various methods exist to determine this function, the
earliest being the method of least squares.

Sensitivity analysis: A tool used during the model-making process to
determine the quantity of variation in the observable quantities that can be
attributed to variation in each input parameter.

State space: The collection of all possible states a system can be in. For
example, one’s location on earth is described by 3 parameters: longitude,
latitude, and altitude. This is one’s spatial state. Spatial state space is the
collection of all possible combinations of longitude, latitude, and altitude.
Extending this to N parameters, one can imagine the space as an
N-dimensional grid where each vertex represents a different parameter
combination and thus a different spatial state.

Steady-state solution: The solution to a kinetic equation or set of
equations that is obtained by setting all time derivatives to zero, a justifiable
assumption for equilibrated systems.

Stochastic model: A model that incorporates random fluctuations in
model parameters or model structure.
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