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Total plasma homocysteine concentra-
tion (tHcy) is a biomarker for atherothrom-
botic disease, but causality remains un-
certain. Polymorphisms in the genes
involved in methionine metabolism ex-
plain only a small fraction of the heritabil-
ity of tHcy levels. In a genome-wide asso-
ciation study, we examined the genetic
determinants of tHcy using a 2-stage de-
sign. First, 283 437 single nucleotide poly-
morphisms (SNPs) were tested for asso-
ciation with tHcy in 387 persons recruited

from 21 large Spanish families. Of those,
17 SNPs showed equal or stronger asso-
ciation with tHcy level compared with
the MTHFR 677C>T SNP (� � 0.10,
P � .0001). Second, a replication analysis
of these 17 SNPs was performed in pa-
tients with premature myocardial infarc-
tion (n � 1238). Novel associations were
found for SNPs near the ZNF366 gene
(lead SNP rs7445013; discovery stage:
adjusted � � �0.12, P � 5.30 � 10�6, rep-
lication stage: adjusted � � �0.13,

P � .004) and the PTPRD gene (lead SNP
rs973117; discovery stage: adjusted
� � 0.11, P � 5.5 � 10�6, replication
stage: adjusted � � 0.10, P � .005). These
associations were independent of known
confounders, including creatinine clear-
ance and plasma fibrinogen concentra-
tion. Our findings implicate novel path-
ways in homocysteine metabolism, and
highlight the need for investigation of the
associated genes in the etiology of vascu-
lar diseases. (Blood. 2009;114:1417-1422)

Introduction

Homocysteine is formed during the metabolism of the essential
amino acid methionine. Extreme elevations of total plasma homo-
cysteine (tHcy) (free and protein-bound) are observed among
children with homocystinuria, a condition closely associated with
the occurrence of vascular disease and venous thrombosis.1 In the
general population, moderate elevation of tHcy levels is associated
with increased risk of coronary artery disease (CAD),2,3 stroke,3

and venous thromboembolism (VTE)4 but causality has not
been established.5,6

The issue of whether tHcy is causally related to atherothrom-
botic events has been addressed by genetic association studies of
the 677C�T single nucleotide polymorphism (SNP) in the
methylenetetrahydrofolate reductase (MTHFR) gene (rs1801133).
The 677C�T substitution leads to a nonsynonymous amino acid
change resulting in reduced enzymatic activity of MTHFR.7

Recent meta-analyses of this genetic variant show weak support
for homocysteine as an etiologically important factor for CAD,
whereas the support for a causal relationship with stroke and
VTE is stronger.4,5,8 In contrast with the monogeneic homocystin-
uria,8 moderate elevations in tHcy levels are believed to reflect
the effects of several genetic variants encoding enzymes in-

volved in methionine metabolism,9,10 or their B-vitamin cofac-
tors (folate and vitamin B12)11 or the effects of renal
impairment.12

Studies in related persons have indicated that the tHcy concen-
tration has a strong genetic component, with an estimated total
heritability of tHcy ranging from 25% in family studies to 57% in
twin studies.13,14 Linkage study signals typically reflect the effects
of rare genetic variants and several such studies have reported
linkage at different chromosomal regions: 11q23, 12q14, 13q31,
and 16q12.13,15 In addition, common SNPs in the MTHFR,
methionine synthase (MTR),16 methionine synthase reductase
(MTRR),14 and CBS16 genes have been associated with plasma
tHcy, of which the most well studied is MTHFR 677C�T.8,14,17,18

However, the high heritability of tHcy levels remains largely
unexplained by common variants in the genes involved in methio-
nine metabolism detected to date. Accordingly, we searched for
novel genetic determinants of plasma tHcy using a genome-
wide set of SNPs in the GAIT (Genetic Analysis of Idiopathic
Thrombophilia) study and sought to replicate any associations
detected in the PROCARDIS study of patients with myocardial
infarction (MI).
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Methods

The GAIT discovery cohort included 387 persons belonging to 21 Spanish
families; 12 were selected through a proband with idiopathic thrombophilia,
whereas the remaining 9 families were randomly selected (Table 1).19 The
plasma tHcy concentration was measured by high-performance liquid
chromatography (Millipore) and fluorescence detection (Kontron Instru-
ments).13 Genotyping of a genome-wide set of 307 984 SNPs was
performed using the Illumina Infinium 317k Beadchip. SNPs were filtered
out if they had a genotype call rate less than 95%, a minor allele frequency
(MAF) less than 2.5%, or failed the Hardy-Weinberg (HWE) test of
expected genotype distribution (P � 5 � 10�7). After quality control,
283 437 SNPs remained for analysis.

The replication cohort consisted of 1238 patients enrolled in the
PROCARDIS study, all of whom had suffered MI before or at the age of
65 years (Table 1).20,21 Recruitment was carried out in Germany, Italy,
Sweden, and the United Kingdom. Total homocysteine was determined by
fluorescence high-performance liquid chromatography.21 Genotyping was
performed using the Illumina Infinium II Human 1M Beadchip. All SNPs
selected for in silico replication analysis in PROCARDIS conformed to
HWE (P � .05), with the exception of rs10488697, for which the P value
was .01. The average genotype call rate for the SNPs prioritized for
replication was 98.7%.

GAIT protocols were approved by the Institutional Review Board of the
Hospital de la Santa Creu i Sant Pau, and the PROCARDIS protocol was
approved by the Ethics Committees of the participating institutions. All
subjects gave informed consent in accordance with the Declaration
of Helsinki.

The statistical analyses in GAIT were carried out using variance
components-based methodology and SOLAR Version 4.0 software
package.22 Variables associated with plasma tHcy including age, sex,
body mass index, smoking, and MTHFR 677C�T were included in the
variance components framework as linear predictors of log-transformed
plasma tHcy level. Measured genotype analysis was used for association
testing, assuming an additive model of allelic effect.23 A P value less
than .0001 was required for a SNP to be included in the replication study.
The choice of significance level was based on the strength of the
MTHFR 677C�T SNP association with plasma tHcy, that is, SNPs in the
GAIT GWAS with a similar effect size and frequency as MTHFR
677C�T were prioritized for replication (Table 2).

In PROCARDIS, the log-transformed plasma tHcy concentration was
tested for association with prioritized SNPs using linear regression,
assuming an additive genetic model, with adjustments for age, sex, body
mass index, smoking status, country of origin, and MTHFR 677C�T
genotype. The MTR SNP rs1805087was tagged using SNP rs16879418. The
threshold for statistical significance was set at .05 in the replication study.
Statistical analyses were carried out in PLINK 1.0524 and SPSS 16.0 for

Windows, and calculations of linkage disequilibrium were performed in
Haploview 4.0.25

Results

Table 1 shows selected characteristics of participants in the GAIT
study and the PROCARDIS study with data available on genotypes
and tHcy levels. Of a total of 283 437 SNPs tested in GAIT,
18 SNPs, including MTHFR 677C�T, were associated with plasma
tHcy at P � .0001 (Table 2). The strongest associations were
observed for 3 SNPs positioned between 20- and 30-kb upstream of
the ZNF366 gene (P � 5 � 10�6; Table 2). The SNPs identified as
associated with plasma tHcy levels in GAIT were tested for
replication in patients with MI.

We replicated the associations with tHcy for SNP rs1801133 in
the MTHFR gene (P � .003), for SNP rs973117 located 18-kb
upstream of the PTPRD gene (P � .04), and for the SNPs adjacent
to the ZNF366 gene (lead SNP rs7445013, P � .009), with a
consistent direction of effect (Table 2). Plasma tHcy concentration
(log transformed) correlated with both plasma fibrinogen (Pearson
R2 � 0.11) and eGFR (Pearson R2 � �0.24) in PROCARDIS.
However, the association between genetic variants and tHcy
concentration persisted after additional adjustment for plasma
fibrinogen and eGFR (MTHFR rs1801133, � � 0.12, P � .001;
ZNF366 rs7445013, � � �0.13, P � .0004; PTPRD rs973117,
� � 0.10, P � .005). The geometric mean tHcy concentration was
12.1, 12.4, and 13.8 �M, respectively, for CC, CT, and TT
genotypes of MTHFR rs1801133; 11.9, 12.5, and 12.8 �M, respec-
tively, for AA, GA, and GG genotypes of ZNF366 rs7445013; and
12.1, 12.6, and 12.9 �M, respectively, for CC, AC and AA
genotypes of PTPRD rs973117.

Analyses of SNPs positioned near ZNF366 rs7445013 (supple-
mental Table 1, available on the Blood website; see the Supplemen-
tal Materials link at the top of the online article) and PTPRD
rs973117 (supplemental Table 2) revealed additional significant
SNP associations with plasma tHcy. Importantly, not all of the
additional tHcy-associated SNPs in the ZNF366 locus were strongly
linked to the lead rs7445013 SNP (Figure 1). In contrast, the
nominally associated SNPs near PTPRD rs973117 were all in near
complete allelic association (data not shown).

The ZNF366 locus was subsequently saturated with SNPs
inferred by imputation, using the CEU HapMap phase II samples as
reference and the PROCARDIS MI patient sample as target. Using

Table 1. Baseline characteristics of the GAIT and PROCARDIS study cohorts

Characteristic GAIT study (n � 399) PROCARDIS study (n � 1238)

Median age, y (range) 37.7 (1-87) 62 (57-66)

Women, no. (%) 217 (54.4) 236 (18.7)

Current smoker, no. (%) 151 (37.8) 708 (56.0)

Lipid-lowering treatment, no. (%) 28 (7.0) 910 (71.9)

Antihypertensive treatment, no. (%) 30 (7.5) 1010 (79.8)

Mean body mass index, kg/m2 (SD) 24.8 (4.9) 28.1 (4.12)

Mean HDL cholesterol (SD) 1.42 (0.37) 1.14 (0.29)

Mean LDL cholesterol (SD) 3.27 (1.0) 2.82 (0.81)

Mean triglycerides (SD) 1.12 (0.88) 1.87 (1.14)

Median fibrinogen, g/L (interquartile range) 3.2 (1.6-5.8) 3.7 (3.3-4.3)

Median homocysteine, total, mg/L (interquartile range) 7.74 (2.7-23.8) 12.2 (9.9-14.9)

Median estimated glomerular filtration rate, mL/min/kg2 (interquartile range) NA 74.8 (62-89)

The GAIT study19 was performed to investigate genetic susceptibility to idiopathic thrombophilia and the PROCARDIS study20,21 was performed to identify susceptibility
genes for premature MI.

HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; and NA, not available.
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PLINK, only SNPs with an average maximal posterior probability
greater than 90% were kept, which resulted in 52 usable SNPs that
were tested for association with the plasma tHcy concentration

together with the experimental SNPs. Overall, most of the imputed
SNPs showed similar association test-statistics compared with
rs7445013 (Figure 2). However, SNPs rs9293289, rs2338219, and

Table 2. Top SNP associations with plasma tHcy concentration in GAIT and replication results in PROCARDIS

CHR SNP Position, kbp Nearest gene* A1

GAIT, n � 387 PROCARDIS, n � 1238

MAF, % � P MAF, % � P†

1 rs1801133 11779 MTHFR G 39 0.11 9.30 � 10�5 36 0.12 .003

3 rs10934885 130782 PLXND1 T 27 �0.13 2.10 � 10�5 22 �0.01 .905

5 rs7445013 71734 ZNF366 A 45 �0.12 5.30 � 10�6 45 �0.11 .009

5 rs2338216 71738 ZNF366 C 45 �0.13 3.30 � 10�6 45 �0.10 .011

5 rs4703872 71759 ZNF366 C 45 �0.12 5.30 � 10�6 45 �0.10 .010

6 rs2071481 32928 TAP1 T 12 �0.16 8.20 � 10�5 10 �0.06 .401

6 rs154986 32987 HLA-DMB G 10 0.17 7.60 � 10�5 7 �0.08 .328

7 rs2701039 107411 LAMB1 G 34 �0.12 2.20 � 10�5 39 �0.07 .112

7 rs1559971 124749 T 25 0.13 1.00 � 10�5 33 0.01 .765

7 rs7795867 124765 T 19 0.13 5.40 � 10�5 25 0 .995

9 rs973117 8990 PTPRD C 33 0.11 5.50 � 10�6 36 0.09 .042

11 rs10488697 113475 ZBTB16 A 11 0.17 2.20 � 10�5 8 0.07 .311

12 rs2190679 124886 G 33 0.11 6.60 � 10�5 36 �0.02 .564

12 rs1859943 124893 G 36 0.11 6.40 � 10�5 41 �0.01 .892

15 rs10162946 21689 G 10 �0.19 2.00 � 10�5 13 0.02 .721

18 rs9962181 73441 GALR1 T 13 0.14 9.20 � 10�5 10 �0.04 .547

19 rs2250066 56221 KLK11 C 12 0.14 8.90 � 10�5 15 0 .945

21 rs2826520 21085 C 33 �0.11 3.20 � 10�5 32 0.02 .725

P values were adjusted for age, sex, smoking, BMI, and the MTHFR rs1801133 SNP.
CHR indicates chromosome; MAF, minor allele frequency; A1, major allele; and �, standardized � coefficient, obtained in the linear regression analyses.
*No nearest gene given for SNPs more than 100 kbp from the closest protein-coding gene.
†Adjusted for age, sex, smoking, BMI, country, and the MTHFR rs1801133 SNP. For the rs1801133 SNP, the above adjustments were applied, with the obvious exception

of SNP rs1801133 itself.

Figure 1. Linkage disequilibrium between all genotyped SNPs positioned in or near the ZNF366 gene in the PROCARDIS study. The white frames denote SNPs
associated with plasma tHcy concentration at a P � .05.
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rs17378679 were significantly associated with plasma tHcy levels
with effect size larger than that for rs7445013. Specifically, SNP
rs17378679 is less common than rs7445013 (MAF � 14%), is
positioned close to the 3� UTR region of ZNF366, and shows
markedly stronger association test statistics with the plasma tHcy
concentration (� � �0.18, P � .019).

To investigate the relative contribution to the variation in plasma
tHcy made by SNPs ZNF366 rs7445013 and PTPRD rs973117, models
for each of the 2 studies were generated that also took other suggested
loci for tHcy as well as nongenetic factors into account (Table 3). The
result obtained for ZNF366 rs7445013 suggested that this SNP contrib-
utes to 3.8% of the variation in GAIT, whereas the corresponding figure
in PROCARDIS MI patients was 0.9%. The PTPRD rs973117 SNP
contributed to 1.3% of the variation in GAIT and to 0.5% of the
variation in PROCARDIS.

Discussion

In the present study, we performed a genome-wide SNP association
study of plasma tHcy concentration and identified SNPs adjacent to
and in the ZNF366 and PTPRD genes as novel determinants of

plasma tHcy. In our replication sample, the lead SNP rs7445013 at
the ZNF366 locus was an equally strong predictor of plasma tHcy
concentration as MTHFR 677C�T. An advantage of using a
sample of MI patients for replication is that it allows for testing the
SNP-tHcy associations in the context of impaired renal function,
low-grade inflammation, and hypercoagulability. Therefore it is
important that the genotype-phenotype associations were not
attenuated by additional adjustment for eGFR and plasma fibrino-
gen concentration. In contrast, the predictive values of the linear
regression models testing lead SNPs in the 2 loci were improved.
With the exception of MTHFR, none of the genes positioned close
to the associated SNPs have previously been implicated in the
regulation of plasma tHcy levels, nor do they have any known
function in methionine metabolism.

To date, common sequence variants in a total of 8 genes have
been suggested to be associated with plasma tHcy. These include
the MTHFR, MTR, MTRR, and CBS genes in the methionine
synthesis pathway and 4 additional loci that were recently identi-
fied in the Women’s Genome Health Study.26 The newly identified
loci were positioned in or adjacent to the CPS1, MUT, NOX4, and
DPEP1 genes. Taken together, the associated SNPs in these 8 genes
accounted for a total of 2.6% of the variation in tHcy in the
PROCARDIS sample, whereas the corresponding figure was 5.2%
in GAIT (Table 3). In addition, we have previously reported a
linkage signal on chromosome 11 in the GAIT project.14 Fine-
mapping of this genomic region identified a haplotype built with
10 SNPs within the NNMT gene that was strongly associated with
higher tHcy levels.14 This is a rare haplotype (only 18 carriers
among 398 persons) that explained 5% of the tHcy variation in
GAIT, whereas the whole QTL on chromosome 11 accounted for as
much as 19%. However, SNPs within or nearby the NNMT gene
included in the GAIT GWAS did not show significant associations
with the plasma tHcy concentration (data not shown). This latter
observation indicates that the power of the GAIT GWAS was too
low to detect any rare variants in this locus. Taken together, the
current and previous studies on GAIT using SNP-based genotype-
phenotype association analysis and microsatellite marker-based
linkage analysis, respectively, demonstrate that common and rare
variants at different loci contribute to the genetic architecture of an
intermediate phenotype such as plasma tHcy concentration. Collec-
tively, common and rare homocysteine-associated genetic variants
identified to date seem to account for at least 15% of the variation
in plasma tHcy in GAIT. Accordingly, they account for a relatively
limited proportion of the estimated heritability for plasma tHcy.

One limitation of the present study was the inability to adjust for
folate and B-vitamin status, which is known to influence the plasma
tHcy concentration. A recent tHcy-lowering trial in patients with
CAD demonstrated a decrease by 30% after 1 year of intervention
in the groups receiving folic acid and vitamin B12.27 Thus, intake
of folic acid and B-vitamins through food fortification or oral
capsules is an important confounder when addressing genetic
influences on tHcy level, and the inability to adjust for this
confounder may result in an underestimation of the genetic effects
on plasma tHcy concentration. However, we do not expect the
folate and B-vitamin status to differ significantly between the study
cohorts, as both the GAIT and PROCARDIS studies were con-
ducted in populations without mandatory folic acid fortification. In
this context, it is interesting that a recent genome-wide association
study demonstrated novel associations of vitamin B6 and B12
concentration with SNPs in the FUT2 and ALPL genes.28 These
findings suggest that vitamin-B metabolism is genetically deter-
mined and imply the existence of interindividual variation in the

Figure 2. Association of plasma tHcy concentration with experimental and
imputed SNPs in the PROCARDIS study. SNPs rs9293289, rs2338219, and
rs17378679 were significantly associated with plasma tHcy (P � .05) and had an
effect size larger than that of rs7445013 (� � �0.10).

Table 3. Partition of plasma tHcy variance according to clinical and
genetic variables obtained by multiple stepwise linear regression
analysis in the GAIT and PROCARDIS samples

Category

Category R2

GAIT PROCARDIS

Age, sex, smoking, BMI, country 0.188 0.063

Plasma fibrinogen 0.008 0.013

eGFR NA 0.035

MTHFR (rs1801133), MTR (rs1805087), MTRR

(rs16879418), CBS (rs6586282)

0.050 0.015

CPS1 (rs7422339), MUT (rs4267943), NOX4

(rs11018628), DPEP1 (rs460879)

0.002 0.011

ZNF366 (rs7445013) 0.038 0.009

PTPRD (rs973117) 0.013 0.005

Total 0.299 0.151

BMI indicates body mass index; and NA, not available.
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effectiveness of tHcy-lowering treatment with B-vitamins or food
fortification, which could influence the plasma tHcy concentration.

It is noteworthy that SNPs with low MAF or structural variants
were not included in the models, mainly because of low statistical
power. Thus, other types of genetic variation at the loci we
identified and tested may account for a significant proportion of the
heritability. Consequently, larger studies including the novel ZNF366
and PTPRD loci are required to obtain final estimations of the
genetic contribution to the variation in plasma tHcy. These
restrictions notwithstanding, the associations between common
SNPs in the ZNF366 and PTPRD genes and plasma tHcy concentra-
tion are robust and firmly implicate ZNF366 and PTPRD in
homocysteine metabolism.

The ZNF366 gene on chromosome 5 encodes a Kruppel-type
zinc finger protein. Zinc-finger proteins constitute a large family of
transcriptional regulators, many of which have been strongly
conserved during evolution. A recent study investigated the tran-
scriptional regulation of estrogen receptor-	 (ERalpha) and con-
cluded that ZNF366 acts as a strong corepressor of ERalpha
activity and thus may play an important role in the regulation of
expression of genes in response to estrogen.29 A link between
ERalpha activity and homocysteine is the decrease of plasma tHcy,
observed after treatment with selective estrogen receptor modula-
tors in postmenopausal women.30 The PTPRD gene on chromo-
some 9 encodes the protein tyrosine phosphatase receptor type
delta. Two recent GWAS reports demonstrated that SNPs in this
gene were associated with the restless legs syndrome, a condition
known to be more prevalent among patients with cardiovascular
disease and end-stage renal disease.31

We conclude that common genetic variants at the ZNF366 and
PTPRD loci were associated with the plasma tHcy concentration.
The proteins encoded at these loci may be part of unexplored
molecular pathways influencing homocysteine metabolism and
accordingly warrant further investigation in stroke, VTE, and other
thrombotic diseases.

Acknowledgments

Genotyping of the GAIT samples was performed at the Center
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