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The diagnosis of myelodysplastic syn-
drome (MDS) currently relies primarily on
the morphologic assessment of the pa-
tient’s bone marrow and peripheral blood
cells. Moreover, prognostic scoring sys-
tems rely on observer-dependent assess-
ments of blast percentage and dysplasia.
Gene expression profiling could enhance
current diagnostic and prognostic sys-
tems by providing a set of standardized,
objective gene signatures. Within the Mi-
croarray Innovations in LEukemia study,
a diagnostic classification model was in-

vestigated to distinguish the distinct sub-
classes of pediatric and adult leukemia,
as well as MDS. Overall, the accuracy of
the diagnostic classification model for
subtyping leukemia was approximately
93%, but this was not reflected for the
MDS samples giving only approximately
50% accuracy. Discordant samples of
MDS were classified either into acute
myeloid leukemia (AML) or “none-of-the-
targets” (neither leukemia nor MDS) cat-
egories. To clarify the discordant results,
all submitted 174 MDS samples were ex-

ternally reviewed, although this did not
improve the molecular classification re-
sults. However, a significant correlation
was noted between the AML and “none-of-
the-targets” categories and prognosis,
leading to a prognostic classification
model to predict for time-dependent prob-
ability of leukemic transformation. The
prognostic classification model accu-
rately discriminated patients with a rapid
transformation to AML within 18 months
from those with more indolent disease.
(Blood. 2009;114:1063-1072)

Introduction

The myelodysplastic syndromes (MDSs) are clonal hematopoietic
disorders that are characterized by ineffective hematopoiesis and a
variable propensity to evolve to acute myeloid leukemia (AML).1

Standard diagnostic criteria for MDS and its various subtypes,
using either the older French-American-British classification2 or
the more recent World Health Organization (WHO) classifica-
tion,3-6 rely heavily on the subjective morphologic evaluation of
bone marrow cells.

Given the variable course of individual cases of MDS, several
prognostic scoring systems have been proposed to predict survival
and probability of leukemic evolution. The 2 most widely used
systems, the International Prognostic Scoring System (IPSS)7 and
the WHO classification-based prognostic scoring system,8 have
both been shown to have prognostic value. However, both systems
include observer-dependent criteria,9 such as blast percentage,
degree of lineage dysplasia, and presence of ringed sideroblasts.
The diagnostic and prognostic challenges in MDS are compounded
by the technical complexity of cytogenetic analysis. Thus, a
standardized objective molecularly based classification strategy,
such as gene expression profiling (GEP), could provide an im-
proved method for diagnosis and prognostication in this group of
disorders. From a technical perspective, intraplatform consistency

across multiple laboratories as well as a high level of interplatform
concordance in terms of genes identified as differentially expressed
by microarrays have been demonstrated.10,11

4The first report of a microarray-based GEP schema for
hematologic malignancies used an unsupervised, class discovery
approach to uncover the molecular distinctions between AML and
acute lymphoblastic leukemia,12 and demonstrated that a GEP
strategy could accurately subdivide acute leukemias.13-15 Subse-
quently, several microarray-based GEP studies of MDS, mostly
using purified CD34� or AC133� cell populations, have been
published. Several studies compared gene signatures between
MDS and the healthy persons, between different risk groups of
MDS, or between MDS-derived AML and de novo AML.16-19

Although these studies have provided important molecular insights
into the pathophysiology of MDS, they were not designed to test
the diagnostic or prognostic capabilities of GEP in this group
of diseases.

The international multi-institutional Microarray Innovations in LEu-
kemia (MILE) research program, centered on the European Leukemia-
Net (ELN, www.leukemia-net.org), assessed the clinical utility of a
microarray-based GEP assay in the diagnosis and subclassification of
16 clinically recognized subtypes of acute and chronic leukemia.
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A diagnostic classification (DC) model, developed for and evaluated
during the MILE study, was also designed to distinguish leukemia from
MDS and from nonleukemic conditions.20

Although the DC model proved to be very accurate in the classifica-
tion of leukemia, it failed to confirm the clinical diagnosis of MDS in
half of the MDS specimens submitted to the study.21 In the discordant
cases, the DC model classification was either AML or a nonleukemic
condition, referred to as “none-of-the-targets.” However, a blinded
external pathologic review confirmed the initial clinical diagnosis of
MDS in 94% of cases. We observed that cases of MDS classified as
AML by the DC model had more aggressive disease and more rapid
progression to AML, whereas MDS cases classified as “none-of-the-
targets” had a more indolent clinical course. Based on this observation,
we developed an improved prognostic classification (PC) model. The
essence of the PC model was to provide a score related to transformation
to AML and overall survival for MDS patients, which was based on the
microarray data and clinical observations of time toAML of the training
dataset.

Methods

Patient samples

The MILE study was approved by the relevant ethical committees in each
country, and each patient sample was taken at de novo presentation of the
disease with ethical informed consent for research purposes in each center
in accordance with the Declaration of Helsinki. Bone marrow mononuclear
cells were separated by Ficoll-Hypaque technique at each center, and total
RNA was extracted according to the study protocol.

There are several patient datasets referred to in this manuscript (Figure
1). The original cohort of MDS samples submitted to the stage I of the
MILE study consisted of 174 patients. After external review, 10 samples
were excluded, leaving a cohort of 164 samples (dataset N164). Further
subsets of N164 were defined as follows: (1) dataset N139 included the

validated MDS specimens but excluded the chronic myelomonocytic
leukemia (CMML) cases; (2) dataset N110 included patients in N139 for
which data on survival and time to AML transformation were available;
(3) dataset N74 was a subset of N110 and included patients with less than
18 months to AML or at least 18 months to AML; and (4) dataset N43 was a
subset of N74 and included patients with less than 36 months to AML or at
least 36 months to AML. Clinical characteristics of the N164, N139, or
N110 MDS patient groups are shown in Table 1. Further annotation of the
samples listing individual IPSS parameters, such as blast score, cytogenetic
risk categories, and cytopenias, is available online.

RNA extraction

The methods used for RNA isolation, cRNA preparation and labeling,
microarray analysis, quality control, and normalization of microarray data
were as previously described.22

For each specimen (ie, Ficoll-banded bone marrow mononuclear
cells), total RNA was converted into double-stranded cDNA by reverse
transcription using a cDNA Synthesis System kit, including an oli-
go(dT)24-T7 primer (Roche Applied Science) and the Poly-A control
transcripts (Affymetrix). The generated cDNA was purified using the
GeneChip Sample Cleanup Module (Affymetrix). Labeled cRNA was
generated using the Microarray RNA target synthesis kit (Roche Applied
Science) and in vitro transcription labeling nucleotide mix (Affymetrix).
The generated cRNA was purified using the GeneChip Sample Cleanup
Module (Affymetrix) and quantified using the NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies). In each preparation, an
amount of 11.0 �g cRNA was fragmented with 5� Fragmentation
Buffer (Affymetrix) in a final reaction volume of 25 �L. The incubation
steps during cDNA synthesis, in vitro transcription reaction, and target
fragmentation were performed using the Hybex Microarray Incubation
System (SciGene) and Eppendorf ThermoStat plus instruments (Eppen-
dorf). Hybridization, washing, staining, and scanning protocols, respec-
tively, were performed on Affymetrix GeneChip instruments (Hybridiza-
tion Oven 640, Fluidics Station FS450, Scanner GCS3000) as

139 validated MDS samples 
excluding CMML (cohort N139)

110 validated MDS samples 
with outcome data (cohort N110)

174 MDS cases collected as 
part of the MILE study and 

classification analysis 
performed with Diagnostic 

Classifier (DC) model

Cohort N43 used to generate the 
Prognostic Classifier 2 (PC2) for 

the groups with less than 36 
months to AML or at least 36 

months to AML

Cohort N74 used to generate the 
Prognostic Classifier 1 (PC1) for 

the groups with less than 18 
months to AML or at least 18 

months to AML 

164 samples (cohort N164) 
confirmed as MDS by external 

blinded expert review

Note: 10 samples re-assigned to 
other diagnoses

25 CMML samples excluded  
based on WHO criteria

Figure 1. Flow chart showing the relationship of datasets
used in the study. The chart explains the selection of patient
cohorts and filtering processes in the DC model analysis and the
development of the PC model risk scores.

1064 MILLS et al BLOOD, 30 JULY 2009 � VOLUME 114, NUMBER 5

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/114/5/1063/1486815/zh803109001063.pdf by guest on 07 M

ay 2024



recommended by the manufacturer. This procedure was well docu-
mented, and all laboratories were specifically trained in precise applica-
tions of this procedure and were required to demonstrate proficiency
before commencement of this study.22

Image analysis and data processing

Microarray image files (DAT files) and cell intensity files (CEL files) were
generated using default Affymetrix microarray analysis parameters (GCOS
1.2 software). The data preprocessing included generating probe set level
signals, DS, or DQN1 algorithms, as described elsewhere.23 Data visualiza-
tion and exploratory analysis, such as box plots, principal component
analysis (PCA), and hierarchical clustering, were performed with R
software (http://www.R-project.org) and Partek Genomics Suite (http://
www.partek.com).24 Pathway analysis was done using the Ingenuity
Pathway Analysis software (www.ingenuity.com). All microarray raw data
(CEL files) and probe set signals are available at the National Center for
Biotechnology Information Gene Expression Omnibus database (GEO,
http://www.ncbi.nlm.nih.gov/geo/),25 series accession number GSE15061.

Leukemia diagnostic classification model

The DC model is based on all-pairwise linear classifiers for 18 distinct classes.
This model was intended to be evaluated in the MILE study and discriminated

between 16 leukemia classes, MDS, and a “none-of-the-targets” control group
(supplemental Table 1, available on the Blood website; see the Supplemental
Materials link at the top of the online article). It consists of 18 � (18�1)/2 � 153
binary classifiers for all class pairs. For every class pair, a linear binary classifier
was a support vector machine26,27 using DQN signals.23 The final call is based on
the majority vote of the binary calls. The DC model used 534 probe sets on the
HG-U133 Plus 2.0 microarray and a training dataset consisting of 1627 clinical
specimens and 5 nonleukemia cell lines. A total of 1094 patients were analyzed
using microarray pairs of HG-U133A and HG-U133B, and the remaining 538
GEPs were generated based on the HG-U133 Plus 2.0 microarray profiles
(Affymetrix).Amajority of specimens have been described elsewhere.14 Detailed
information on the 534 probe sets is available online in supplemental data.

Gene selection based on Cox proportional hazards for a
prognostic classifier

In the N110 dataset, there were 19 cases with time to AML transformation
after diagnosis of MDS and 91 cases with censored time to AML, including
death from other causes. There were 55 observed deaths with time after
diagnosis of MDS and 55 cases with censored survival time. The PC model
was applied to every probe set to calculate the P value and recorded the
top-200 probe sets with the smallest P values. The gene selection was not
only done for the whole dataset N110 but also done in the leave-one-out

Table 1. Clinical characteristics of MDS data

N164, n (%) N139, n (%) N110, n (%)

Age at diagnosis, y

Younger than 50 8 (5) 7 (5) 6 (5)

51-60 21 (13) 19 (14) 17 (15)

61-70 30 (18) 25 (18) 19 (17)

71-80 50 (30) 43 (31) 35 (32)

Older than 81 52 (32) 42 (30) 33 (30)

Unknown 3 (2) 3 (2) 0 (0)

Sex

Male 66 (40) 55 (40) 47 (43)

Female 98 (60) 84 (60) 63 (57)

Disease classification

5q� syndrome 11 (7) 11 (8) 10 (9)

CMML 25 (15)

RA 39 (24) 39 (28) 35 (32)

RAEB1 26 (16) 26 (19) 19 (17)

RAEB2 22 (13) 22 (16) 19 (17)

RARS 29 (18) 29 (21) 20 (18)

RCMD 12 (7) 12 (9) 7 (6)

IPSS scores

Low 72 (44) 59 (42) 53 (48)

Intermediate-1 62 (38) 51 (37) 33 (30)

Intermediate-2 25 (15) 24 (17) 19 (17)

High 5 (3) 5 (4) 5 (5)

DC model classification

AML 37 (23) 31 (22) 25 (23)

MDS 82 (50) 70 (50) 55 (50)

“None-of-the-targets” 39 (24) 34 (24) 27 (25)

Tied between class calls 6 (4) 4 (3) 3 (3)

Blast cell count

Less than 5% 114 (70) 92 (66) 72 (65)

5%-10% 29 (18) 26 (19) 20 (18)

11%-20% 21 (13) 21 (15) 18 (16)

Cytogenetics

Normal 117 (71) 97 (70) 78 (71)

Good (1 of: del(5q), del(20q), �Y) 18 (11) 18 (13) 15 (14)

Intermediate (any abnormalities) 19 (12) 14 (10) 12 (11)

Poor (complex: � 3 abnormalities) 8 (5) 8 (6) 4 (4)

Poor (chromosome 7 abnormalities) 2 (1) 2 (1) 1 (1)

Cytopenia

0 or 1 cytopenias 98 (60) 79 (57) 65 (59)

2 or 3 cytopenias 66 (40) 60 (43) 45 (41)
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(LOO) cross-validation manner (ie, by generation of 110 sets of top-200
probe sets selected for all possible subsets containing 109 specimen;
LOO of N110).

Risk scores based on classification of groups of time to AML

The 1-nearest neighbor classification was used to build risk scores for a
prognostic model with 2 prognostic classifiers (PC1 and PC2). Two sub-datasets
of N110 were used. The dataset N74 was used to generate the classifier for the
groups with less than 18 months to AML or at least 18 months to AML. The
dataset N43 was used to generate a second classifier for the groups with less than
36 months to AML or at least 36 months to AML. The top-30 probe sets were
used for classification of the dataset N74, and the top-70 probe sets were used for
classification of the dataset N43. Detailed information on the PC probe sets is
available online (supplemental data). The accuracy of LOO cross-validation was
64 of 74 � 86% for classification with the 18-month cut-off, and that for
classification with the 36-month cut-off was 35 of 43 � 81%. The process of
selecting probe sets was done separately for each reiteration of cross-validation.
The resubstitution of the training data back into the risk score resulted in a highly
significant P value of the log-rank test; but to avoid an overestimate of the
significance, the LOO cross-validation was used for an estimate of accuracy for
the risk score.

The risk score is defined by the classification results. For a given GEP, we
first applied the 1-nearest neighbor classifier of N74 in the Euclidean space of
30 probe sets to determine whether the subject will transfer to AML in less than
18 months. If yes, the risk score was 2. Otherwise, we applied the 1-nearest
neighbor classifier of N43 in the Euclidean space of 70 probe sets to determine
whether the subject will transform to AML in less than 36 months. If yes, the risk
score was 1; otherwise, the risk score was 0. For the LOO approach, the sizes of
the training datasets were 73 and 42, instead of 74 and 43, respectively. The
significance of differences in time of transformation to AML and overall survival
was assessed by the log-rank test for the Kaplan-Meier plots. Various covariates
were compared with the hazard ratios. The multigene classification models rely
on all genes in the model, with each gene weighted for its contribution to the
model’s output based on training data.

Results

MDS disease classification using the DC model

Within the MILE study, 174 GEPs from samples obtained at
diagnosis were originally included with a clinical diagnosis of
MDS. These specimens were submitted and processed in Berlin,
Cardiff, Munich, or Salamanca. The diagnosis of the samples was
assessed by specialists at each submission site using their indi-
vidual expertise and standard diagnostic procedures. The age
distribution of patients was representative of a typical nonselected
MDS population, as was the distribution of MDS subtypes with a
majority of samples from “low-risk” patients and cases with a
normal karyotype (supplemental data).

Analysis of these 174 specimens using the DC model resulted in
only 49% of them being correctly called as MDS20 from their
underlying GEPs. The remainder of the submitted MDS specimens
was evenly split between a call into “none-of-the-targets” (24%)
and AML (25%) categories, with a further 2% reporting a tie
between classes (ie, being considered as samples with low signa-
ture confidence). There was no correlation between the classifica-
tion call and the site of analysis of these specimens.

Validation of MDS samples

To confirm the clinical diagnosis of the submitted MDS specimens,
bone marrow smears were sent for blinded review to 2 external experts
from different institutions, who confirmed the diagnosis of MDS in 164
(94%) of the specimens. Ten discordant specimens were removed from
the subsequent analysis as a result of this review process: 6 cases were

reclassified asAML, which interestingly was consistent with the original
class call from the DC model; and 4 cases were excluded from this MDS
study: one CML, one CLL, one myeloma, and an incomplete slide set
that did not permit external review. There was 82% concordance
between the submitted and the external MDS subtype assignment of the
final 164 samples. Four cases were submitted with a generic diagnosis of
“MDS” and the validated diagnoses of these were that one had
refractory anemia (RA), 2 had refractory anemia with excess blasts
1 (RAEB1), and one was RAEB2.Atotal of 84% (n � 21) of submitted
CMML cases were confirmed; the remaining 4 patients (16%) were
reclassified as RA, RAEB1, RAEB1, and refractory cytopenia with
multilineage dysplasia (RCMD). Approximately one-third (17 of 52) of
the submitted RA samples were reclassified to either RAEB1 (3 cases),
refractory anemia with ring sideroblasts (RARS) (4 cases), RCMD
(6 cases), or 5q� syndrome (4 cases). Only one of the submitted
RAEB1 or RAEB2 cases (38 in total) was not validated, and in this case
it was reclassified from RAEB1 to RAEB2.

In the final cohort of 164 confirmed MDS specimens, 50% were
called MDS by the DC model, 24% were called “none-of-the-
targets,” 23% were called as AML, and the remaining 4% had
mixed calls, indicating low classification confidence (ie, a classifi-
cation tie of 2 or 3 classes). The clinical characteristics of the final
164 submitted and reviewed specimens are shown in Table 1. The
2001 WHO classification of the myeloid neoplasm scheme6

reassigned CMML into a separate MDS/MPD disease group;
hence, this group of 25 patients was considered a distinct group
during the subsequent analysis. This left 139 validated MDS
specimens with 4 specimens returning a tie with the DC model:
3 had a 3-way tie between MDS/AML/“none-of-the-targets,” and
one had a tie between categories AML and “none-of-the-targets.”

Comparison of validated MDS samples with de novo AML and
“none-of-the-targets” classes

For a comparison analysis, exemplary MILE study data from
patients submitted as AML and “none-of-the-targets” by the
4 contributing centers were used. These were 202 AML specimens
and 69 “none-of-the-targets” GEPs. These specimens were com-
bined with the 135 validated MDS specimens, excluding those with
tied calls, for a PCA using the probe sets from the DC model
(Figure 2A). In the 3-dimensional plot, a partial overlap was
observed for MDS and AML, as well as for MDS and “none-of-the-
targets” samples (not highlighted). The hierarchical clustering
analyses (Figure 2B) of the same data are consistent with MDS
gene expression illustrating a biologic continuum from AML to a
nonleukemic disease. MDS samples do not form clear and distinct
clusters but rather are interspersed among AML or “none-of-the-
targets” specimens, whereas many AML specimens form clear
clusters. Notably, there was no clustering associated with process-
ing center, age, or sex. Equally, no distinct separation on the basis
of IPSS was seen (Figure 3).

Trends were seen between MDS and DC model calls: none of the
5q� MDS samples had received an AML call (63% were called MDS;
37% were called “none-of-the-targets”), 86% of RARS specimens had
received an MDS call, 68% of RAEB2 specimens had received anAML
call, 32% had received MDS, and none had received a “none-of-the-
targets” call, whereas only 11% of RA specimens had an AML call. In
addition, the influence of the blast cell count at diagnosis was investi-
gated: 66% of the samples had less than 5% blasts, 19% had between
5% and 10% blasts, whereas 15% had more than 10% blasts. Approxi-
mately 19% of those samples called AML by the DC classifier had less
than 5% blasts, whereas 9% of samples called “none-of-the-targets” had
more than 5% blasts (supplemental Figure 1). Approximately 7% of

1066 MILLS et al BLOOD, 30 JULY 2009 � VOLUME 114, NUMBER 5

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/114/5/1063/1486815/zh803109001063.pdf by guest on 07 M

ay 2024



patients with an AML or MDS call and less than 5% blasts transformed.
However, 17% of the patients who did transform had less than 5%
blasts. These results would indicate that the blast cell count was not the
only parameter contributing to either AML transformation or the

molecular classifications based on the gene expression microarray
analysis.

A similar analysis for the 25 CMML specimens showed that 12
(48%) were called by the DC model as MDS, 6 (24%) were called

A

AML

MDS

MDS, called as AML

“none-of-the-targets“

B
Class

Class

Center

Classification

AML

MDS

“none-of-the-targets”

Center

Berlin

Cardiff

Munich

Salamanca

Classification

MDS, called AML

MDS, called MDS

MDS, called “none-of-the-targets”

Figure 2. GEPs of MDS samples, de novo AML, and “none-of-the-targets” cases. (A) In the PCA, 406 cases are displayed based on the 534-probe set signature from the
DC model. The first 3 principal components accounted for 28.8% of variation of the data (component 1 � 16.9%; component 2 � 6.6%; component 3 � 5.3%). Each sphere
represents a single GEP. The AML (n � 202) and “none-of-the-targets” (n � 69) samples are colored according to the initial diagnosis. The shape of the AML ellipsoid was
determined by the variability within the AML samples, and the ellipsoid was drawn to surround the samples within 2-fold SD. In the MDS group (n � 135), cases called by the
diagnostic classifier as AML (n � 31) are further distinguished. Detailed information on the classifier probe sets is available online. (B) The agglomerative hierarchical clustering
yields an entire hierarchy of clusters for all samples in the dataset. Euclidean distance was used to measure the dissimilarity between AML (n � 202), MDS (n � 135), and
“none-of-the-targets” (n � 69) samples. Ward’s minimum-variance method was used to determine the hierarchy and to define the groups. The average width of the clustering
structure was represented as dendrogram in the clustering tree. The samples are annotated according to diagnostic category (Class), laboratory where the microarray
analyses were performed (Center), and results of the DC model (Classification).
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AML, 5 (20%) were called as “none-of-the-targets,” with the
remaining 2 (8%) having tied calls between AML, MDS, and
“none-of-the-targets.” These proportions were similar to those seen
for the MDS cohort. With respect to the blast cell count, the CMML
specimens with AML calls had a median of 5% blasts, those with
MDS calls had a median of 2% blasts, and those with “none-of-the-
targets” calls had a median of 3% blasts.

Prognostic outcome grouped by the DC model

A total of 107 of 110 validated MDS specimens with outcome data
available were uniquely classified by the DC model. The median
follow-up period for these patients was 27 months. A Kaplan-Meier
analysis was applied to both overall survival and time to AML
transformation from diagnosis. In Figure 4A, overall survival grouped
by the DC model calls showed a nonsignificant P value (.167) of the
log-rank test. The 5-year survival rates ofAML, MDS, and “none-of-the-
targets” were 15% (n � 25), 24% (n � 55), and 50% (n � 27). The
median survival times were 26, 35, and 50 months, respectively.

However, there were significant differences (P value of log-rank
test, � 8 � 10�5) in time to AML transformation among the
3 molecular classification groups: none (0%) of 27 MDS patients
with a “none-of-the-targets” call, 8 (14.5%) of 55 patients with
MDS call, and 11 (44%) of 25 patients with an AML call (Figure
4B). All patients with an AML call that transformed did so within
18 months; only one patient in this group had a censor date more
than 72 months. The 18-month AML transformation rate for MDS
patients with a MDS call was 8%. No patient with a “none-of-the-

targets” call by the gene expression microarray algorithm trans-
formed to AML within 5 years.

Prognostic classifier for MDS

The DC model had been designed to function as a diagnostic
classifier for leukemia and MDS, not as a prognostic classifier.
However, in light of the prognostic implications of the MDS
“miscalls” using the DC, the expression data were reevaluated with
the aim of producing a prognostic risk score aimed at the prediction
for 3 groups of MDS patients with respect to time to AML
transformation: group A, less than 18 months; group B, at least
18 months and less than 36 months; and group C, more than
36 months. Two datasets were used in the development of a
hierarchical microarray-based risk score: dataset N74 was used to
generate a classifier for the groups A (given a risk score of 2) and B,
whereas the dataset N43 was used to generate the classifier for the
groups B (risk score 1) and C (risk score 0). The Kaplan-Meier
curves for overall survival and time to AML transformation by the
risk score and the corresponding LOO risk scores for the dataset
N110 are shown in Figure 5. Two variations of risk scores were
calculated: one using resubstitution (Figure 5B,D) and a second
method of using LOO cross-validation (Figure 5C,E). Both analy-
ses showed highly significant differences between the groups for
overall survival (Figure 5B-C) and time to AML transformation
(Figure 5D-E). A nonhierarchical method, in which the resulting
score of 0 or 1 from each of the 2 classifiers were combined, also

Class

Center

Classification

IPSS

Blast %

Center Classification Blast %IPSSClass

MDS Berlin MDS, called AML 0 0 (<5%)
Cardiff MDS, called MDS 0.5 – 1.0 0.5 (5% – 10%)

Munich MDS, called “none-of-the-targets” 1.5 – 2.0 1.5 (11% – 20%)

Salamanca ≥2.5

Figure 3. Hierarchical clustering of MDS samples. In the analysis, 135 MDS cases are displayed based on the 534-probe set signature from the diagnostic classifier. Euclidean
distance was used to measure the dissimilarity between the MDS cases, and Ward’s minimum-variance method was used to determine the hierarchy and to define the groups. The
average width of the clustering structure was represented as dendrogram in the clustering tree. The samples are annotated according to diagnostic category (Class), laboratory where the
microarray analyses were performed (Center), results of the DC model (Classification), IPSS score (IPSS), and percentages of blast cells (Blast %).
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resulted in significant separation of the 3 patient groups (supplemen-
tal Figure 2).

Covariate analysis

To further assess the effects of covariates of interest, we
calculated the hazard ratios in Cox proportional hazards models.
Table 2 lists the univariate and multivariate hazard ratios of the
IPSS, diagnostic groups (5q�, RA, RARS, RAEB1, RAEB2,
and RCMD), and the DC and PC microarray models. For time to
AML transformation, the diagnostic WHO group was not
significant (P � .099). Similarly, for overall survival, the
diagnostic group and the DC model call were not signifi-
cant. The multicovariate hazard ratios showed that the PC
model risk scores were more significant than IPSS for both time
to AML transformation (P � .005) and overall survival
(P � .009). Similarly, both the DC model calls and PC model
scores were more significant than the individual IPSS compo-

nents: blast count score, karyotype score, and cytopenia score
(Table 2).

Molecular pathway analysis

The genes (probe sets) used by the DC and PC microarray models
were further studied with a pathway analysis application. Gene-by-
gene interactions for the model classes is shown in supplemental
Figures 3 and 4.

Discussion

The Gene Expression Profiling working group (WP13) of the ELN
initiated the international MILE study program in 7 ELN centers,
3 centers from the United States, and one center in Singapore.20 The aim
of the MILE study was to compare the concordance of classification of

A
DC model call

AML
MDS
”none-of-the-targets”

B

DC model call

AML
MDS
”none-of-the-targets”

Figure 4. Kaplan-Meier curves grouped by DC model calls. The MDS samples are colored according to the DC model call. (A) Overall survival in months after diagnosis of
MDS. (B) Time to AML transformation in months after diagnosis of MDS.
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16 acute and chronic leukemia subclasses, MDS, and a “none-of-the-
targets” group (as a control or normal class) derived from GEPs, with
conventional routine diagnostic methods. The conventional approaches
included a routine diagnostic workup based on all the currently used
methods combined as needed, such as cytomorphology, flow
cytometry, cytogenetics, fluorescence in situ hybridization, or
reverse-transcribed polymerase chain reaction assays. There was
no attempt made to standardize the traditional approach, and each
participating center applied methodologies routinely applied at the
corresponding laboratory. Within the first phase of the MILE study
(stage I), standardized gene expression microarray protocols were

used to study 2143 patients.20,22 As part of the study design,
designated laboratory operators were trained during a prephase on
the corresponding sample preparation protocol and microarray
workflow to ensure standardized assay conditions and robust
laboratory proficiency. The overall classification accuracy for all
the MILE leukemia classification categories (ie, excluding MDS)
demonstrated approximately 95% concordance in cross-validation
runs using stage I and pre-MILE study data.20 It was an unexpected
observation that the DC model made a correct diagnostic call in
only 50% of MDS patients with a clinical diagnosis of MDS; the
classifications for the remaining specimens split roughly equally

A

Classifier 1

Classifier 2

Prediction of AML transformation  
<36 months (and >= 18 months).

Risk score = 1

Prediction of AML transformation 
>=36 months

Risk score = 0

Prediction of AML 
transformation <18 months

Risk score = 2

B C

Risk

0
1
2

0
1
2

Risk (LOO)

0
1
2

0
1
2

D E

Risk

0
1
2

0
1
2

Risk (LOO)

0
1
2

0
1
2

Figure 5. PC model analysis. (A) Flow diagram for the calculation of the MDS risk score. Kaplan-Meier curves grouped by PC model scores. (B) Overall survival after diagnosis of MDS,
calculated by the resubstitution classifiers. (C) Overall survival after diagnosis of MDS, calculated by the hierarchical LOO classifiers. (D) Time to AML transformation after diagnosis of
MDS, calculated by the resubstitution classifiers. (E) Time toAML transformation after diagnosis of MDS, calculated by the hierarchical LOO classifiers.
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between AML and “none-of-the-targets.” An external morphology
review confirmed that this discordance was not the result of errors
in the original diagnoses. A total of 164 of the 174 submitted MDS
specimens were indeed MDS, with 6 of the 10 other specimens
being reclassified as AML, a diagnosis that was consistent with the
microarray DC model results.

A correlation was noted for MDS disease subtype and IPSS
score7 with a higher proportion of high IPSS scores also having
an AML call. The IPSS score is derived from weighted
contributions of the number of blasts, cytogenetic aberrations,
and number of cytopenic lineages. No correlation with cytope-
nia score or cytogenetic abnormalities was seen. The correlation
of blast count and the DC model call was not exact and showed
that a proportion of patients with an AML call had less than 5%
blasts, whereas some patients with a “none-of-the-targets” call
had greater than 10% blasts. This would suggest that those
patients with an AML call, but low blast count, had molecular
features apparent in GEPs of AML without the corresponding
morphologic blast appearance.

The DC model had been designed to be a diagnostic classifier for 16
classes of leukemia, MDS, and “none-of-the-targets” across chronic and
acute classes of lymphoid or myeloid malignancy, and the observed
correlation with time to AML transformation or overall survival was not
part of the original hypothesis. Disease classification by microarray
technology has been reported in several AML and MDS studies13,15,28 in
addition to the high accuracy seen in the MILE study.20 The DC model
calls of the MDS patients included in the MILE study showed a
significant association with time to AML transformation, but not to
overall survival. However, it should be noted that the lack of correlation
with IPSS7 may have been expected as this scoring system was based on
only 25% of patients, in each risk category, undergoing evolution to
acute myeloid leukemia. Interestingly, those patients with an AML
classification call that did transform did so within 18 months from
diagnosis, whereas none of the patients with the “none-of-the-targets”
call transformed. The majority of patients with an MDS classification
result, who did transform to AML, did so more slowly, over a 5-year
period. This discrepancy was exploited for the development of a time to
AML transformation risk score by subdividing patients into early and
late transformers. The Kaplan-Meier analysis and univariate and multi-

variate hazard ratios all showed high significance using the risk score
calculated with the LOO approach.

Pathway analysis of the genes contributing to the discrimination
between the MDS molecular subgroups identified several networks that
are involved in the progression from “none-of-the-targets” through
MDS to AML, with several pathways indicating that these are involved
in both steps of disease progression. A similar analysis of the pathways
and interacting genes from the LOO risk scores highlights several genes
known to be actively involved in acute myeloid leukemia, including
HOX cluster genes, FLT3, KIT, RUNX1, and WT1. HOX genes often
form the basis of GEP lists in studies on AML.29-32 The other candidate
genes are also often mutated in AML and have prognostic significance,
particularly in AML patients with a normal karyotype.33-37 Furthermore,
some of the genes are associated with therapy-related progression from
MDS to AML.38

In conclusion, the DC model, evaluated as part of the MILE study
program, was designed and built for improving clinical diagnosis but did
not show the same high accuracy for MDS compared with the other 16
lymphoid or myeloid acute leukemia diagnostic subgroups. However,
an expected, and significant, correlation with the time to AML transfor-
mation was observed, which led to the development of a prognostic
algorithm that can identify MDS patients with high, intermediate, and
low risk of progression to AML, based only on the respective GEPs
from a microarray analysis. Thus, the molecular signatures may go
beyond morphology, phenotype, and cytogenetics by removing any
subjective assessment with an objective assessment based on a series of
measurements of specific RNA levels using microarrays independent of
any of these parameters. In addition, the genes involved in the predictive
scores may also allow the development of targeted therapies for MDS
patients with poor prognosis.
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