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Ischemia exists in many diseased tis-
sues, including arthritic joints, atheroscle-
rotic plaques, and malignant tumors. Mac-
rophages accumulate in these sites and
up-regulate hypoxia-inducible transcrip-
tion factors (HIFs) 1 and 2 in response to
the hypoxia present. Here we show that
the gene expression profile in primary
human and murine macrophages changes
markedly when they are exposed to hyp-
oxia for 18 hours. For example, they were
seen to up-regulate the cell surface recep-

tors, CXCR4 and GLUT1, and the potent,
tumor-promoting cytokines, vascular en-
dothelial growth factor A, interleukin
(IL)-1B and IL-8, adrenomedullin, CXCR4,
and angiopoietin-2. Hypoxia also stimu-
lated their expression and/or phosphory-
lation of various proteins in the nuclear
factor-kB (NF-«B) signaling pathway. We
then used both genetic and pharmaco-
logic methods to manipulate the levels of
HIFs-1a and 2« or NF-kB in primary mac-
rophages to elucidate their role in the

hypoxic induction of many of these key
genes. These studies showed that both
HIF-1 and -2, but not NF-kB, are important
transcriptional effectors regulating the re-
sponses of macrophages to such a pe-
riod of hypoxia. Further studies using
experimental mouse models are now war-
ranted to investigate the role of such
macrophage responses in the progres-
sion of various diseased tissues, such
as malignant tumors. (Blood. 2009;114:
844-859)

Introduction

Cells experience sustained periods of hypoxia in diseased tissues,
such as malignant tumors, atherosclerotic plaques, and arthritic
joints.!3 The predominant transcription factors mediating the
effects of hypoxia on gene expression are hypoxia-inducible
factors (HIFs) 1 and 2.5 These consist of distinct, hypoxia-
responsive « subunits and an identical, constitutively expressed
{3 subunit. In the presence of oxygen, the « subunits are hydroxy-
lated by oxygen-sensitive enzymes called prolyl hydroxylases,
which targets them for degradation by a ubiquitin-proteasomal
pathway.* In hypoxia, HIFa subunits accumulate and translocate to
the nucleus, couple with the HIF-1( subunit, and bind to hypoxic
response elements (HREs) in the promoters of various genes,
activating their transcription.*3

Macrophages accumulate in most ischemic diseased sites,
including tumors,®® where they accumulate both HIF-la and
2a!%1" and up-regulate HIF target genes, such as the potent
proangiogenic growth factor, vascular endothelial growth factor A
(VEGFA).!2 There are conflicting views of the relative contribution
of each HIF to the regulation of hypoxic gene expression in these
cells. Some studies suggest that the main form of HIF up-regulated
by tumor-associated macrophages (TAMs) is HIF-2,!-13 and over-
expression of HIF-2a in normoxic human macrophages up-regulates
various proangiogenic genes.'* However, human macrophages also

markedly up-regulate HIF-1oe when exposed to hypoxia in vitro
and in tumors,'® and HIF-1a—deficient murine macrophages express
lower levels of such HIF-regulated genes as VEGF and the glucose
receptor GLUT1 in hypoxia than their wild-type counterparts.!'

Interestingly, the exact contribution of HIFs-1 and -2 to the
regulation of hypoxic gene expression appears to vary between
different cell types. HIF-1, for example, mediates the induction of
virtually all hypoxia-activated genes in mouse embryonic fibro-
blasts and human breast tumor cells,'®!” whereas HIF-2 performs
this function in renal tumor cells.!” This depends partly on the
cell type—specific expression of other transcription factors, such as
Elk-1, which bind to the promoters of some genes conferring HIF-2
target specificity on them.!$1°

Hypoxia may also employ another transcription factor, nuclear
factor-kB (NF-kB), as 2 major components of canonical NF-kB
signaling, kB kinase 3 (IKK-() and p65 (RelA) are activated when
murine macrophages experience short-term (< 4 hours) hypoxia.
This then up-regulates their expression of both HIF-1a and various
HIF target genes.?0-2?

In the present study, we show that exposure to hypoxia for
18 hours markedly up-regulates a broad array of tumor-promoting
genes in primary macrophages, and then investigated the role of
HIFs-1 and -2 and NF-kB in this phenomenon.

Submitted December 22, 2008; accepted April 22, 2009. Prepublished online
as Blood First Edition paper, May 19, 2009; DOI 10.1182/blood-2008-
12-195941.

The publication costs of this article were defrayed in part by page charge

844

payment. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

© 2009 by The American Society of Hematology

BLOOD, 23 JULY 2009 - VOLUME 114, NUMBER 4

20z aunr g0 uo 3sanb Aq Jpd'¥8000600€08UZ/ZLS LZE L/vY8/v/Y | L/Pd-8jo11e/poo|geu suoledlgndyse//:d)y woly papeojumoq


https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2008-12-195941&domain=pdf&date_stamp=2009-07-23

BLOOD, 23 JULY 2009 - VOLUME 114, NUMBER 4

Methods

Cells

Two forms of primary macrophages were used in this study: macrophages
differentiated in vitro from human peripheral blood (monocyte-derived
macrophages [MDMs]) and bone marrow—derived macrophages (BMDM:s)
derived from bone marrow progenitors isolated from control (ie, wild-type
or +/—) mice or mice bearing myeloid cell-targeted deletions in either the
HIF-1o or HIF-2a gene. Mouse studies were approved and conducted by
the Abramson Family Cancer Research Institute.

Isolation and culture of human MDMs. Monocytes were isolated
from Buffy coats (National Blood Service, Sheffield, United Kingdom) as
previously described.!? A total of 50 X 10° mononuclear cells were seeded
in Iscove Modified Dulbecco Media (BioWhittaker UK Ltd) with 5%
human AB serum (neat AB serum contains ~ 1 ng/mL human CSF-1) and
2 mM L-glutamine (all from Sigma-Aldrich) and incubated at 37°C, 5%
CO,. After 2 hours, adherent cells were washed and cultured for 7 days to
allow differentiation into MDMs.

Isolation and culture of murine BMUDMs. As previously described,?
BMDMs were isolated from the bones of control mice or mice bearing a
targeted deletion of (1) the HIF-1a gene in myeloid cells (2loxP/110xP,
LysM Cre/+ mice!?) or (2) the HIF-2a gene in myeloid cells (2loxP/110xP,
LysM Cre/+ mice; H.Z.I. and M.C.S., manuscript submitted, April 2009).

Bone marrow aspirates were washed and resuspended in medium with
10% heat-inactivated fetal calf serum (BioWhittaker UK Ltd), 2 mM
L-glutamine (Sigma-Aldrich), 100 IU/mL penicillin and 100 pg/mL strep-
tomycin (BioWhittaker UK Ltd), and murine macrophage colony-
stimulating factor (M-CSF; PeproTech Ltd), and cultured at 37°C, 5% CO,
for 7 days to allow macrophage differentiation. Their purity was assessed
after 7 days using an F4/80 antibody. Only BMDM cultures of more than
90% purity were used in subsequent experiments.

Successful deletion of HIFs-1 or 2« has been demonstrated previously
using Southern and/or immunoblotting assays of extracts from hypoxic
BMDMs from the HIF-1a LysM-Cre mice?? and HIF-2a LysM-Cre (H.Z.1.
and M.C.S., manuscript submitted April 2009) mice used in this study.

Normoxic and hypoxic cell cultures

Human MDMs or murine BMDMs were subjected to severe hypoxia
(<0.5% O,) or normoxia (20.9% 0O,) in 5% CO, humidified multigas
incubators (Heto) for 18 hours.

siRNA treatment of human MDMs in vitro

siRNA duplexes for HIF-lao or HIF-2a were synthesized by Eurogentec
Laboratories. A randomly scrambled duplex was synthesized as a negative
control. The HIF-la siRNA duplex sequences were composed of: sense,
5-CUGAUGACCAGCAACUUGAJATAT-3; and antisense, 5-UCAAG-
UUGCUGGUCAUCAGATAT-3. The HIF-2a siRNA duplex sequences were:
sense, 5S-CAGCAUCUUUGAUAGCAGUATAT-3; and antisense, 5-ACUGC-
UAUCAAAGAUGCUGATAT-3. The scrambled nonspecific duplex sequences
were: sense, 5-AGUUCAACGACCAGUAGUCATAT-3; and antisense, 5-GAC-
UACUGGUCGUUGAJTAT-3. Transient siRNA transfections were carried out
using RNAifect as described by the manufacturer’s instructions (QIAGEN).
Five-day human MDM:s were washed and incubated in 100 L siRNA complex
for 48 hours. Cells were then washed, fresh media added, and cells incubated in
normoxia or hypoxia for 18 hours as described earlier.

RNA and protein extraction from human MDMs

Total RNA was prepared using RNeasy kit (QIAGEN) according to the
manufacturer’s instructions and stored at —80°C. For protein extraction,
cells were lysed with lysis buffer (50 mM Tris-HCI, pH 8.0, 150 mM NacCl,
1% Triton X-100, and 1 protease inhibitor tablet, Roche). Protein levels
were measured using the bicinchoninic acid (BCA) protein assay
(Sigma-Aldrich).
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RNA and protein extraction from murine BMDMs

Total RNA and protein isolation was prepared using NucleoSpin RNA/
Protein kit (Macherey-Nagel) and stored at —80°C for RNA and —20°C for
protein. For HIF-2a—deficient BMDMs, whole cell extracts were prepared
using radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris, pH 8.0,
150 mM NaCl, 1% NP40, 0.1% sodium dodecyl sulfate, 0.25% deoxy-
cholate, 1 mM ethylenediaminetetraacetic acid) containing phosphotase
inhibitors (0.1 mM sodium fluoride, 1 mM sodium orthovanadate, 2 mM
sodium pyrophosphate, and 10 mM [-glycerophosphate). Again, protein
extracts were stored at —20°C until used for immunoblotting.

Transcriptional profile analysis

Human Genome U133A plus 2.0 gene chip arrays (Affymetrix UK) that
detect 47 000 transcripts were used. Total RNA was reverse-transcribed to
generate cDNA libraries using oligo dT and superscript II (Invitrogen).
cDNA was amplified using MEGscript T7 kit and cleaned using GeneChip
Cleanup (both Affymetrix). Labeled cRNA was synthesized using Gene-
Chip IVT kit and then hybridized to the arrays after the manufacturer’s
instructions (Affymetrix). Gene chips were processed using an Affymetrix
GeneChip scanner 3000.

To verify the results obtained using Affymetrix arrays, total RNA was
extracted from 2 separate experiments, reverse-transcribed, amplified, and
hybridized to Sentrix HumanRef-8_V2 Bead Chip from Illumina according
to the manufacturer’s protocols. After washing and drying, the Beadarray
was scanned using an Illumina Bead Station 500X, which uses SentrixScan
Application, Version 2.7.2 software. Illumina BeadStudio software was
used for quality control assessment and normalization of data using the
LOESS normalization method from BioConductor R packages.

Genes that were up-regulated in both arrays by more than 1.5-fold or
down-regulated by less than 0.67-fold in hypoxia relative to normoxia were
considered differentially expressed. One Affymetrix and an Illumina
microarray were conducted on RNA isolated from separate experiments.
Their combined use was considered to be the first level of screening for the
most robust hypoxia robust genes in human macrophages. Only mRNA
species regulated by hypoxia on all arrays were considered to be reproduc-
ibly regulated by hypoxia and worthy of further study. Using this criterion,
148 genes were up-regulated and 60 genes down-regulated by hypoxia.
A panel of selected genes was then further analyzed using real-time
polymerase chain reaction (PCR).

Real-time PCR

cDNAs was prepared from 1 pg total RNA using SuperScript Synthesis kit
(Invitrogen) and amplified with TagMan gene expression Master Mix and
predesigned gene probes using a ABI 7900HT Sequence Detection
System (Applied Biosystems). The human TagMan gene expression assay
probes used were VEGF, interleukin-1f (IL-1B), IL-6, CXCL8, CXCR4
(chemokine C-X-C receptor 4), adrenomedullin (ADM), STAT4, adenosine
receptor 2A (ADORAZ2A), intercellular adhesion molecule 1 (ICAMI1),
heme oxygenase 1 (HMOX1), prolyl hydroxylase 2 (PHD2), CITED2, heat
shock 70-kDa protein 1B (HSPA1B), ADAM metallopeptidase domain 8
(ADAMS), EROl-like (EROIL), matrix metalloproteinase 7 (MMP7),
glucose transporter 1 (GLUT-1), and B-2-microglobulin as the endogenous
control (Applied Biosystems). The murine TagMan probes used for murine
homologs of these were also supplied by Applied Biosystems. Real-time
PCR cycling conditions for both human and murine samples were
2 minutes at 50°C and then 95°C for 10 minutes followed by 40 cycles of
15 seconds at 95°C followed by 1 minute at 60°C. In addition, the human
NF-kB signaling genes were analyzed using SyBr green real-time PCR. The
primer sequences used were as follows: NFKBIA, forward, TCGCAGTG-
GACCTGCAAAAT; reverse, TGAGCTGGTAGGGAGAATAGC; IKK-a,
forward, CACCATCCACACCTACCCTG; reverse, CTTATCGGGGAT-
CAACGCCAG; IKK-y, forward, CGTACTGGGCGAAGAGTCTC; re-
verse, GGCTGGCTTGGAAATGCAG; NFKBI1 (p50), forward, TGCCAA-
CAGATGGCCCATAC; reverse, TGTTCTTTTCACTAGAGGCACCA; and
Rel A, forward, TTGAGGTGTATTTCACGGGACC; reverse, GCACAT-
CAGCTTGCGAAAAGG. Real-time PCR was done using SyBr Green
PCR Master Mix, detected by ABI-Prism 5700 Sequence Detector, and data
processed using GeneAmp software (Applied Biosystems) The murine
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TagMan probes used for murine homologs of Rel A and IKK-3 were also
supplied by Applied Biosystems. The threshold cycle (Ct) of all human and
murine data was normalized against their respective endogenous controls
(unaltered by hypoxia). Real-time PCR was analyzed in RNA extracts
generated in 3 to 5 independent experiments and then fold changes in
expression relative to normoxic cells calculated with ACt values of the
sample and reference gene using the formula 2~2ACt,

Immunoblotting studies

Immunoblotting for human HIFs-1la and 2« was conducted as described
previously'®!! using 1:1000 antihuman HIF-la monoclonal antibody
supplied by BD Biosciences or 1:1000 antihuman HIF-2a monoclonal
antibody from Novus. Both blots were incubated with horseradish peroxidase-
conjugated antimouse antibody (Dako Denmark) and protein bands visualized
using an enhanced chemilluminescence detection system (GE Healthcare). In all
cases, expression of [-actin was used as a loading control. For NF-xB
immunoblotting assays, an antihuman phospho-NF-kB p635, total NF-kB p65,
phospho-IKK-o/IKK-B, or total IKK-a/3 (Cell Signaling Technology) was used
at a dilution of 1:500 or 1:1000 and incubated overnight at 4°C.

Cytokine release assay

Cell supernatants were centrifuged for 5 minutes at 400g and filtered to
eliminate cell debris and then stored at —20°C. The levels of VEGF, IL-8,
and IL-1P in these supernatants were measured using a BD FACSArray
bioanalyzer (BD Biosciences).

Role of NF-kB in hypoxic gene regulation in primary
macrophages

This was investigated in 2 ways. First, human MDMs were exposed to a
specific NF-kB inhibitor, 4-methyl-N1-(3-phenyl-propyl)-benzene-1,2-
diamine (JSH-23; Merck Chemicals), which blocks translocation of phopho-
rylated NF-kB (p65) to the nucleus of cells and its subsequent activation of
NF-kB gene targets.>* MDMs were exposed to medium alone or medium
containing 40 wM JSH-23 (or the equivalent amount of the vehicle for
JSH-23, dimethyl sulfoxide [DMSO]) for 1.5 hours, washed, and incubated
in normoxia or hypoxia for 18 hours. Normoxic MDMs were also exposed
to 10 ng/mL recombinant human tumor necrosis factor-a (TNF-a; Pepro-
Tech) for 18 hours as a positive control for NF-kB activation. RNA and
nuclear proteins were then extracted from parallel cultures of MDMs after
these treatments for real-time reverse-transcribed (RT) PCR and immuno-
blot analysis, respectively. Some cells were also fixed in 3% formaldehyde
in phosphate-buffered saline for 15 minutes, washed and permeabilized
with ice-cold 100% methanol for 10 minutes, and blocked with 5% goat
serum in 0.3% Triton X-100/phosphate-buffered saline solution for 1 hour.
NF-kB p65 was detected using a rabbit anti-mouse antibody (1:25, Cell
Signaling Technology) followed by addition of goat anti—rabbit Alexa-488
secondary antibody (Invitrogen; 1:250 dilution). Cells were counterstained
with 300 nM 4,6-diamidino-2-phenylindole (DAPI; Invitrogen) and then
photographed on a confocal fluorescent microscope (original magnifica-
tion X400). Twelve areas of cells were photographed for each treatment
group and the degree of nuclear p65 immunofluorescence (ie, Alexa-488
labelling) in each DAPI-stained nuclei quantified using Analysis D software
(Olympus). The proportion of green fluorescence per nuclei was then
calculated for all nuclei in 5 fields of view/treatment. The number of all
MDMs in each field of view containing Alexa-488-labeled (p65™) nuclei
was also counted. To confirm JSH-23 inhibition of NF-kB activity in
hypoxic MDMs, electrophoretic mobility shift assays for NF-kB binding to
an NF-kB DNA consensus site were conducted as described previously by
us® on lysates from MDMs exposed to nomoxia, hypoxia, or hypoxia plus
JSH-23 (all in the presence of DMSO as the vehicle for JSH-23). Protein
extracts from parallel cultures of MDMs were also immunoblotted for
HIFs-1 and -2« (as described above in “Immunoblotting studies”).

The second approach was to infect MDMs with an adenovirus
expressing a dominant negative inhibitor of IKK-f3 to block phosphorylation/
activation of p65/RelA. After 4 days in culture, MDMs were exposed to
50 ng/mL recombinant human M-CSF for 24 hours to stimulate up-
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regulation of integrin ayBs (required for adenovirus infection of macro-
phages?®). The adv-IKK-BPN and control adv (Adv-GFP; a gift from Dr
Thorsten Hagemann, Barts and The London Cancer Centre, London, United
Kingdom) were E1/E3-deleted, of the Ad5 serotype, and used to transfect
MDMs as described previously.?” MDMs were infected for 2 hours with
100 multiplicity of infection of either adenovirus in serum-free medium.
The adenovirus was then removed and fresh medium containing 2%
antibody serum added. MDMs were maintained for a further 2 days in
culture and then exposed to hypoxia or normoxia for 18 hours. This
infection protocol markedly reduces the activity of p65/RelA in human
MDMs?” and human endothelial cells.?®

Immunofluorescent labeling of IL-13 expressed by TAMs in
hypoxic areas of murine 4T1 mammary tumors

Frozen sections of 4T1 murine mammary tumors were generated in a
previous study.?® These had been grown in the mammary fat pads of female
BALB/c mice and removed and snap frozen 2 hours after injection of mice
with the hypoxic cell marker, pimonidazole.” Sections (7 wM) were
blocked with FcR Blocking Reagent (Miltenyi Biotec) in Tris-buffered
saline-0.05% Tween 20 for 30 minutes at room temperature and then
incubated with rat anti—-F4/80-Alexa 488 (1 wg/mL, clone CI:A3-1; AbD
Serotec), goat anti-mouse IL-13 (15 pg/mL; R&D Systems), and rabbit
anti-PIMO (1:4000, a gift from James Raleigh) for 30 minutes at room
temperature. Negative controls included substitution of primary antibodies
with species-matched, nonspecific antibodies. Sections were then washed
twice and incubated in donkey anti—goat-Alexa 568 (8 wg/mL; Invitrogen)
or Alexa 647—conjugated goat anti—rabbit (8 pg/mL; Invitrogen) secondary
antibodies for 30 minutes at room temperature in the dark and 30 nM DAPI
(Invitrogen) for 2 minutes.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed as described previ-
ously?? on gene lists ranked by level of hypoxic gene induction (hypoxia/
normoxia fold induction) separately for both the Affymetrix and Illumina
gene expression datasets. Correlations to the predefined curated and
transcription factor target gene set collections were analyzed with the
GSEA preranked tool using 1000 permutations. Further information
regarding the gene sets used in these analyses is available in the Molecular
Signatures Database (MSigDB; www.broad.mit.edu/gsea/msigdb).

Statistics

All experiments were repeated 3 to 6 times. Statistical analyses were
performed using the 1- or 2-tailed Student 7 test to determine statistical
significance after checking the data for normality (as appropriate). P values
less than .05 were considered statistically significant. All data are expressed
as mean plus or minus SEM.

Results

Evidence of distinct transcriptional signaling in primary human
macrophages experiencing hypoxia

Hypoxic MDMs up-regulated both HIF-1a and HIF-2q, and this
was markedly inhibited by prior treatment with siRNA to either
HIFa (Figure 1A). As in previous publications,’!3? genes were
defined as being differentially regulated in hypoxia if they exhib-
ited more than 1.5-fold increase in gene expression (Table 1) or
down-regulated if they showed less than 0.67-fold change (Table 2)
compared with normoxic cultures. A comparison of our human
MDM microarray results (Tables 1-2) with those obtained previ-
ously for related human myeloid cell types exposed to hypoxia
(monocytes and monocyte-derived dendritic cells3!*?) shows that
some genes were seen to be regulated by all 3 cell types
(up-regulated: VEGFA, CXCR4, TNF-«, TIMP1, PHD3, aldolases
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Figure 1. Role of HIF-1a and -2« in the hypoxic A
induction of VEGFA and CXCL8: insights from siRNA
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knockdown studies and use of macrophages bearing
a deletion in the HIF-1a gene. (A) Immunoblots of

HIF-10 - fasso

HIF-20,

- . Al -

HIF-1a or HIF-2 « in MDM lysates after their exposure to

normoxia (20.9% Og; N) or hypoxia (0.1% Og; H) for |P-actin — G emee e wws | o
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18 hours, or hypoxia for 18 hours after exposure to
siRNA for HIF-1a (1), HIF-2 (2«t), both HIFs-1a and 2a
together (1a + 2a), or a scrambled control (Scr). Load- 100
ing controls were B-actin. Vertical lines have been in-
serted to indicate repositioned lanes from the same gel.
Below each gel picture is the densitometric analysis of
HIF expression relative to its pB-actin loading control.
(B-C) Effects of HIF-1a and -2a knockdown on the
hypoxic induction of VEGFA (B) and CXCL8 (IL-8; C)

50

% B-actin

100
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% B-actin

mRNA and protein. In the case of VEGF, gene expres- 0
sion was also assayed in normoxic and hypoxic BMDMs

from mice bearing a myeloid cell-specific knockout of the
HIF-1 o gene (HIF-1a~/~) in vitro by quantitative RT-PCR

(B right panel). It was not possible to do this for CXCLS8,

as this gene is not expressed in mice. Pooled data B
from 6 replicate experiments are shown. *P < .05 com-
pared with corresponding normoxic group. /P < .05
compared with the scr siRNA/hypoxia group. *P < .05
compared with macrophages from wild-type mice ex-
posed to hypoxia.

40

Fold change

- Scr Scr 1a 2a 1a+ = - Scr 1a 2a 1la+ wt
C 80 -

60 4

Fold changed

20 4

A and C, enolase 2, TREM1, NCF1; down-regulated: cathepsin C).
However, some genes regulated by hypoxia in MDMs are not
similarly regulated by hypoxia in these other 2 cell types, such as
IL-1B, IL-12p40, Ang-2, endothelin 1, STATS 4 and 6, CCLs 3 and
5, CCR7, HMOX1, and hsp70 (up-regulated) and CD36, PECAM1
(CD31), HIF-2a, and MHCII DM3; down-regulated; Tables 1-2).

The 2 full sets of array data (Affymetrix and Illumina) have
been deposited in NCBI's Gene Expression Omnibus and are
accessible through GEO Series accession numbers GSE15949 and
GSE16099, respectively.’334

Several key genes were selected and their up-regulation confirmed
using quantitative RT-PCR (Table 1). Macrophages were also shown to
express abundant IL-13 protein in pimonidazole-stained (hypoxic) areas
of murine 4T1 mammary tumors (Figure 2C).

Genetic manipulation of HIFs-1 and -2« demonstrates the
coregulation of genes in primary human macrophages
experiencing hypoxia

The hypoxic accumulation of both HIFs-1 and -2 was ablated
after transfection with siRNA for either o subunits. Both VEGFA
mRNA and protein were markedly increased by hypoxia, and this
was significantly inhibited by siRNA for either HIFa subunit

—
T T )
H 1o 20

|———  Hypoxia

VEGFA mRNA

40 4

) 0 T T T T
Scr 1o+20 N H 1o 20 Scr 1o+200

}7

7‘ Hypoxia 7\

+ siRNA + SiRNA

[] Normoxia I Hypoxia

VEGFA mRNA

VEGFA Protein

Fold change
Fold change

*A *A XA

HIF-1a’
2a 2a

CXCL8 mRNA CXCL8 Protein

*

Fold change

Scr 1a 2a 1a+
2a 2a

Scr Scr 1a 2a  1a+

(Figure 1B left and middle panels). It may appear that the hypoxic
induction of VEGFA mRNA is higher in hypoxic macrophages
treated with the scrambled control siRNA than in the “no siRNA”
group. However, this failed to reach statistical significance. This
was also the case for these 2 groups in Figure 3E,G,I, and K.

CXCL8 mRNA and protein release were also up-regulated in
hypoxic MDMS (Figure 1C); and although both HIFa siRNA
treatments reduced hypoxia-induced CXCL8 mRNA, only the
effect of HIF-2a siRNA reached significance. However, both HIFa
siRNA species significantly reduced CXCLS protein release (Fig-
ure 1C). The inhibitory effect of HIF siRNA on the hypoxic
induction of both VEGFA and CXCLS8 appeared to be slightly
greater at the protein than the mRNA level.

Hypoxia also up-regulated IL-13 mRNA and protein, and this
was significantly inhibited by exposure to siRNA for either HIF o
subunit (Figure 2A). We then investigated the role of HIFs-1 and -2
in the hypoxic regulation of several other genes listed in Table 1.
The hypoxic up-regulation of mRNA for CXCR4, GLUT1, ad-
renomedulin (ADM), and STAT-4 was significantly (P < .05)
reduced by HIF-1a or 2a siRNA (Figure 3A,C,E,G). In contrast to
the other genes investigated, the hypoxic induction of adenosine
A2a receptor (ADORA2A) and ICAM1 mRNA was significantly
(P < .05) inhibited only by HIF-2«a siRNA (Figure 3LK).
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Transcriptional signaling in primary human MDMs experiencing
hypoxia for 18 hours is independent of NF-xB

Gene set enrichment analysis. To assess the likelihood of NF-kB
playing a role in hypoxic signal transduction in human macrophages, we
first searched our data for correlations with several published gene sets
relating to hypoxia-regulated regulated genes in other cell types (eg, the
“HYPOXIA_REVIEW” gene set®; Figure 4 top panels). This high-
lighted a significant degree of enrichment of known hypoxia-regulated
genes in our array data, showing that hypoxia-induced gene expression
changes in MDMs follow a consensus hypoxia gene expression profile
(Figure 4 top panels). This was evident for both the Affymetrix array
data (Normalized Enrichment Score [NES]: 2.2; False Discovery Rate,
q < 0.001) and the Illumina data (NES: 2.24; q < 0.001). Table 1 shows
that many genes up-regulated by hypoxic MDMs have previously been
identified as NF-kB target genes. In the GSEA analysis, the hypoxic
MDMS array data also correlated significantly with several NF-kB-
related gene sets (eg, the VSNFKAPPAB_01 gene set®®; Figure 4 bottom
panels). Again, this was evident for both the Affymetrix data (NES: 1.69,
q = 0.02) and the Illumina data (NES: 1.67; q = 0.12).

Hypoxic up-regulation of NF-kB signaling in human macro-
phages: role of HIF-1 and -2. The effect of exposure of human
MDMs to hypoxia for 18 hours on NF-kB signaling was then
assessed. IKK-B and v, IkBa, NF-kB1 (p50), and p65/RelA
mRNA levels were up-regulated (and IKK-oo mRNA slightly
down-regulated) in MDMs exposed to 0.1% O, for 18 hours. This
hypoxic regulation (with the exception of IKKs o and vy) was
inhibited using siRNA to knock down either HIF-1 or 2« (Figure
5A). Figure 5C shows that, although there was a small hypoxic
induction of total IKK-B protein, the hypoxic up-regulation of

BLOOD, 23 JULY 2009 - VOLUME 114, NUMBER 4

Figure 2. Hypoxic up-regulation of IL-18 by human
MDMs in vitro and by TAMs in hypoxic areas
of murine mammary tumors: role of HIF-1 and -2.
(A) IL-18 mRNA levels and protein release by human
MDMs after their exposure to normoxia (20.9% O; N) or
hypoxia (0.1% O; H) for 18 hours, or hypoxia for 18 hours
after exposure to siRNA for HIF-1 « (1 @), HIF-2a (2 ),
* both HIFs-1a and -2« together (1o + 2a), or a scrambled
control (Scr). (B) Hypoxic induction of IL-13 mRNA by
BMDMs from wild-type mice and mice bearing a myeloid
cell-specific knockout of the HIF-1 « gene. (C) Up-
regulated expression of IL-1B by F4/80" macrophages in
pimonodazole-stained (ie, hypoxic; H) compared with
pimonodazole-unstained (ie, normoxic; N) areas of mu-

IL-18 mRNA

*

wt HIF-1a™ rine mammary (4T1) tumors (yellow arrows on the merged
H image). Pooled data from 3 replicate experiments
are shown. *P < .05 compared with corresponding nor-

Merged

moxic group. P < .05 compared with the Scr siRNA/
hypoxia group. P < .05 compared with macrophages
from wild-type mice exposed to hypoxia.

p65/RelA mRNA was not mirrored by a similar up-regulation of
total p65/RelA protein, suggesting a differential effect of hypoxia
on mRNA vs protein expression for p65/RelA. By contrast, the
phosphorylation of both IKK-a/f3 and p65/RelA was up-regulated
in hypoxic human MDMs (Figure 5C).

Role of NF-kB in the transcriptional responses of human
macrophages to hypoxia. Figure 6A and B illustrates the effects of
the NF-kB inhibitor JSH-23 on the hypoxic induction of various genes
in human MDM:s. This shows that immunoreactive p65 was cytoplas-
mic in normoxic MDMs but transported to the nucleus on exposure to
TNF-a or 18 hours of hypoxia. In both cases, this was significantly
(P < .05) inhibited by prior exposure to JSH-23. EMSA assays con-
firmed the induction of NF-kB DNA binding in hypoxic MDMs and the
inhibition of this by JSH-23 (Figure 6C). JSH-23—treated cells also
exhibited slightly lower levels of HIFs-1 and -2« (particularly HIF-1o)
than MDMs exposed to hypoxia alone (Figure 6C). We then investi-
gated the effect of JSH-23 inhibition of NF-«kB activity on the induction
of 8 hypoxia-regulated genes listed in Table 1. Exposure to TNF-« for
18 hours significantly (P < .05) increased the expression of VEGFA,
CXCLS, and STAT4, in a manner that was inhibited by JSH-23 (Figure
6). Hypoxia significantly (P <.05) up-regulated all 8 genes studied
(Figure 6D) in a manner that was not reduced by prior exposure of
cells to JSH-23.

Infection of MDMs with adv-IKK-BPN significantly (P <.05)
inhibited their TNF-o—induced expression of CXCL8 mRNA (Figure
7A) as well as the nuclear accumulation of phospho-p65/RelA by
MDMS after 18 hours of exposure to hypoxia (Figure 7B). The control
adv vector had no such effect. However, adv-IKK-BPN blockade of
hypoxia-induced phospho-p65/RelA failed to reduce the hypoxic induc-
tion of VEGFA, CXCLS8, GLUT-1, CXCR4, or ADM mRNA.
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Figure 3. Role of HIFs-1a and -2« in the hypoxic induction of
other key genes by macrophages. (A,C,E,G,|,K) Hypoxic induc-
tion of MRNA for CXCR4, GLUT-1, ADM, STAT4, ADORA2A, and
ICAM1 (as measured by quantitative RT-PCR) after exposure of
primary human macrophages to normoxia (20.9% O; N) or
hypoxia (0.1% Oy; H) for 18 hours, or hypoxia after exposure to
siRNA for HIF-1 « (1 ), HIF-2 & (2 «), both HIFs-1 o and -2 «
together (1 o + 2 «), or a scrambled control (Scr). (B,D,F,H,J,L)
Hypoxic induction of the same genes in wild-type or HIF-1a—
deficient murine BMDMs. Pooled data from 3 replicate experi-
ments are shown. *P < .05 compared with corresponding nor-
moxic group. AP < .05 compared with the Scr siRNA/hypoxia
group. P < .05 compared with macrophages from wild-type
mice exposed to hypoxia.
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Hypoxic regulation of genes in primary murine macrophages:
role of HIFs-1 and -2

HIF-1-deficient BMDMs were only able to mount partial VEGFA
and IL-1B responses to hypoxia (Figures 1B right panel, 2B). The
hypoxic up-regulation of CXCR4 and STAT4 was lost in BMDMs
lacking HIF-1a (Figure 3B,H). This contrasts with our aforemen-
tioned human MDMs data showing that these were regulated by
both HIFs-1 and -2 (Figure 3A,G). The fact that GLUT1 and ADM
were reduced but not ablated in HIF-loe null BMDMs (Figure
3D,F) agrees with our finding that these 2 genes are coregulated by
HIFs-1 and -2 in human MDMs (Figure 3C,E). In addition, in
agreement with the human MDM data (Figure 31,K), the hypoxic
up-regulation of neither the ADORA2A nor ICAMI1 genes was
inhibited in hypoxic HIF-1a null BMDMs (Figure 3J,L).

Figure 5B shows that hypoxic up-regulation of IKK- and
p65/RelA mRNA levels was lost in HIF-1o—deficient BMDMs.
Moreover, the hypoxic induction of phosphorylated p65/RelA was
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lost in HIF-2a—deficient BMDMs (Figure SD). Similar results were
seen for HIF-1a—deficient BMDMs (data not shown).

Discussion

Our data show that exposure to hypoxia activates a distinct transcrip-
tional profile in primary human macrophages, including the up-
regulation of VEGFA, ILs-la and {3, IL-8, STAT4, and ADM; the
receptors, glucose transporter, GLUT1, CXCR4, and the adenosine
receptor 2A (ADORAZ2A). Some were seen to also be regulated by
hypoxia in monocytes and immature dendritic cells (VEGFA, GLUT]1,
and CXCR4).3132 However, others, such as IL-18, ADORA2A, and
STAT4, were only altered in hypoxic macrophages. These differences
could be the result of variations in the severity and/or duration of
hypoxia applied to cells*’? and/or may reflect differences in the
transcription factors used by these 3 cell types in hypoxia. For example,

20z aunr g0 uo 3sanb Aq Jpd'¥8000600€08UZ/ZLS LZE L/vY8/v/Y | L/Pd-8jo11e/poo|geu suoledlgndyse//:d)y woly papeojumoq



856 FANGetal

Array 1 Array 2

BLOOD, 23 JULY 2009 - VOLUME 114, NUMBER 4

Figure 4. Gene enrichment analysis to compare key genes
up-regulated by hypoxia in human MDMs and known NF-kB—
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Enrichment scare (ES)

Hypoxia-regulated
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regulated genes. Hypoxia up-regulated genes identified in
2 separate macrophage cultures using Affymetrix or lllumina
microarrays were ranked by level of hypoxia-mediated induction.
The ranked gene lists were then compared with both a previously
published gene set for hypoxia-regulated genes in tumor cells
(the hypoxia-regulated gene set, top row) or genes previously
shown to be NF-«B target genes (the NF-«B target gene set,
bottom row) by GSEA. The hypoxia-regulated gene set (top row)
was significantly enriched in the hypoxic macrophage gene set
identified on both the Affymetrix (Array 1; NES = 2.2, q < 0.001)
and the lllumina (Array 2; NES = 2.24, q < 0.001) arrays. The
NF-«B target gene set (lower row) was also enriched in the
hypoxic macrophage gene set on both Affymetrix (NES = 1.69,
q = 0.02) and lllumina (NES = 1.67, q = 0.12) arrays.

Nf-kB target
geneset

000 f

hypoxic human monocytes exposed to a similar level and duration of
hypoxia as in the current study failed to up-regulate HIFs-1 and -2« but
rather other transcription factors, such as ATF-4 and Egr-1.%7 Moreover,
the ability to regulate hypoxic gene expression via HIFs is maturation-
linked in macrophages. Although dendritic cells accumulate HIF-1cx in
hypoxia,®® immature forms of this cell type up-regulate other hypoxia-
responsive genes, such as CCL20 via up-regulated p50/p50 NF-«B
homodimers rather than HIFs.*’ A study of the responses of such related

Fold change

Figure 5. Effect of hypoxia on the expression and/or
phosphorylation of components of the canonical
NF-kB signaling pathway in MDMs: regulation by
HIF-1a and -2a. (A) Fold induction (hypoxia, 0.1% -
Oy/normoxia, 20.9% 0O,) of mRNA levels for individual

NF-kB signaling proteins in primary human MDMs. The

contribution of both HIFs-1 and -2 to the regulation of

many of these genes was also assessed using siRNA to

knock down the expression of each « subunit in MDMs. c
(B) Effect of normoxia (N) or hypoxia (0.1% O; H) for
18 hours on the expression of IKK- and p65 mRNA by
murine BMDMs from wild-type or HIF-1—deficient mice.
*P < .05 compared with corresponding normoxic group.
*P < .05 compared with macrophages from wild-type
mice exposed to hypoxia. (C) Immunoblots showing the
effect of exposure to normoxia or hypoxia (0.1% O,) for
18 hours on the levels of total and phosphorylated IKK-3
and p65/RelA in primary human MDMs. Vertical lines
have been inserted to indicate repositioned lanes from

IKKo.
IKKB
IKKy
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Total IKKB »
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myeloid cell types to identical hypoxic conditions would be interesting
but beyond the remit of this study.

As macrophages are known to express receptors for both
VEGF*! and IL-1,%? it is possible that that, during such exposure to
hypoxia, their hypoxia-induced release might have then stimulated
the expression of other genes in macrophages (making it look as if
they are also directly up-regulated by hypoxia when, indeed, the
effect is indirect). However, hypoxic gene expression by human
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the same gel. (D) Effects of normoxic (N) or hypoxic
(0.5% Op; H) culture on the level of total or phosphory-
lated p65 protein in control (+/—) or HIF-2a—deficient
murine BMDMs. Similar results were obtained using
wild-type or HIF-1a—deficient murine BMDMs (data not
shown).
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Figure 6. Inhibition of nuclear translocation of p65
has no effect on the hypoxic induction of various
genes in human MDMs in vitro. (A-B) Effect of the p65
inhibitor JSH-23 (or its vehicle, DMSO) on the nuclear
translocation of p65 induced by TNF-a or hypoxia by
human MDMs. N indicates normoxia; H, hypoxia (0.1%
0O,); % nuclear p65 immunofluorescence, the percentage
of the total, DAPI-stained (blue) area of MDM nuclei that
was GFP* (green). The figures at the base or just above
each bar represent the average percentage of all MDM
nuclei immunofluorescent for p65 (B). *P < .05 with
respect to normoxia alone group. *P < .05 with respect
to TNF-a + DMSO group. AP < .05 with respect to
hypoxia + DMSO group. (C) Effect of JSH-23 on NF-«kB
binding and accumulation of HIFs-1 and -2« in hypoxic
MDMs. N indicates normoxia; H, hypoxia, H + JSH-23,
hypoxia after JSH.23 treatment. All 3 groups received the
vehicle for JSH-23, DMSO. A vertical line has been
inserted to indicate repositioning of lanes from the same
gel; (1) left panel: EMSA showing NF-kB binding to a DNA
consensus sequence, and (2) right panel: immunoblots
for HIFs-1 and -2a. (D) Effect of JSH-23 blockade of p65
function on the fold induction of VEGFA, CXCLS, IL-18,
CXCR4, GLUT-1, STAT4, ADM, and ADORA2A by TNF-«
or hypoxia. *P < .05 with respect to normoxia with DMSO
alone. **P < .05 with respect to group indicated. $P < .05
with respect to TNF + DMSO group. Pooled data from
3 replicate experiments are shown.

MDMs is not reduced in the presence of either a neutralizing VEGF
antibody or an IL-1 receptor antagonist (H.-Y.F., C.M., R.H., and
C.E.L., unpublished observations, March 2009).

We also show, for the first time, that genes encoding the
2 transcription factors, STATS (signal transducers and activators of
transcription) 4 and 6, are up-regulated by hypoxia in macro-
phages. STATs 4 and 6 are known to mediate the marked effects of
2 central immunomodulatory cytokines, IL-12 and IL-4, respec-
tively.*>** It remains to be seen whether their hypoxic induction
could in this way “prime” macrophages to the effects of these
cytokines.

Our HIF siRNA studies showed that both HIFs play a part in
regulating the hypoxic induction of the known HIF target genes,
VEGFA, GLUT1, CXCR4, IL-8, and ADM by MDM:s. Further-
more, hypoxic induction of these genes was reduced but not lost in
HIF-1a—deficient murine macrophages. Similar results were ob-
tained for the hypoxic up-regulation of VEGFA and ADM in
murine HIF-2a—deficient BMDMs (H.Z.1. and M.C.S., manuscript
submitted, April 2009).

The pluripotent cytokine, IL-1(3, stimulates many steps in tumor
progression*> and was up-regulated by hypoxic MDMs. We show
that TAMs express abundant IL-1f in hypoxic areas of murine
mammary (4T1) tumors. The IL-13 gene promoter bears multiple

N +TNF (+ DMSO)
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HREs and is transactivated by HIF-1.4647 Our HIF siRNA knock-
down studies show that HIFs-1 and -2 coregulate the hypoxic
induction of IL-1B in macrophages, a finding confirmed by the
hypoxic up-regulation of IL-1fB being only partially diminished in
HIF-1a—deficient (Figure 1) and HIF-2a—deficient BMDMs (H.Z.1.
and M.C.S., manuscript submitted April 2009).

It remains to be seen whether HIFs-1 and -2 bind to different
HREs on the promoters of the aforementioned coregulated genes or
whether other, unknown mechanisms underpin the phenomenon of
dual HIF responsiveness. Furthermore, as mentioned previously,
this may vary between cell types as HIF-1 has been shown to be the
primary regulator of various genes in some cell types,*!® whereas
other cells use HIF-2 or both HIFs in their regulation.!8:19:4849
Interestingly, when just one HIF was inhibited using siRNA, the
other did not appear to compensate for its loss and maintain
maximal hypoxic induction. It is known that many HIF-target
genes have multiple HREs. If, once HIFs-1 and -2 have bound to
different HREs in a given promoter they then cooperate, both might
be required for maximal gene transcription. This may be similar to
the molecular “cooperation” that takes place between HIF-2 and
Elk-1 on some gene promoters.'819

The knockdown of both HIFs-la and 2o in MDMs failed
to completely block the hypoxic up-regulation of most of the
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HIF-target genes shown in Figures 1 through 3. This suggests that
other transcription factors may also be involved in regulating their
hypoxic induction. The transcription factor, NF-kB, may be one
such factor. This has been shown recently to be activated in
macrophages by short-term (2-4 hours) exposure to hypoxia, with
the expression and/or phosphorylation of IKK-B, IKBa, and
p65/RelA, as well as the nuclear translocation and DNA-binding
activity of p65 being up-regulated.?’-?> There also appears to be a
close interplay between NF-kB and HIF-1 as p65/p50 heterodimers
bind to the HIF-1a gene promoter and drive its expression under
hypoxia. Interestingly, HIF-2« is not up-regulated by NF-«kB in
murine macrophages during short-term hypoxia (4 hours).?> The
present report shows that p65 protein is phosphorylated and binds
DNA in the nuclei of MDMs in hypoxia. Furthermore, we show
that both HIFs-1 and -2 contribute to the maintenance of high levels
of p65 expression and phosphorylation in such cells.

As many of the genes we found to be markedly up-regulated in
human macrophages by hypoxia had previously been identified as
potential NF-kB target genes (Table 1; Figure 4), we examined the
role of p65 in the hypoxic up-regulation of the most highly
up-regulated ones. Studies using the synthetic inhibitor of nuclear
translocation of p65, JSH-23,%* or an adenoviral inhibitor of IKK-
showed that NF-kB is not essential for their induction during an
18-hour exposure to hypoxia. The up-regulation of HIF-la in
macrophages exposed to short-term hypoxia (4 hours) is partially
dependent on NF-kB,??> so the fact that both HIFs-1 and -2«
continued to be up-regulated in JSH-treated MDMs after hypoxia
in our study suggests that either p65 inhibition was incomplete or
the accumulation of these subunits during a more sustained period
(18 hours) of hypoxia is independent of NF-«B.

However, although both forms of NF-«B inhibition resulted in the
marked inhibition of TNF-a-induced CXCLS (as well as other genes
examined with JSH-23), it had no detectable effect on the hypoxic
expression of any of the genes examined. These data are supported by
the recent finding that that the hypoxic induction of several such NF-kB
target genes in murine BMDM s does not involve activation of NF-kB
(H.Z.I1. and M.C.S., manuscript submitted April 2009).

Our data indicate then that NF-kB signaling may not contribute
to the induction of these genes by macrophages in response to an
18-hour exposure to hypoxia. At first glance, this appears to
contrast with the finding mentioned earlier: that hypoxic induction

[1 Normoxia [ Hypoxia
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Figure 7. IKK-B inhibition has no effect
on the hypoxic induction of various genes
in human MDMs in vitro: use of a recom-
binant adenovirus expressing a domi-
nant negative inhibitor of IKK-g (adv-IKK-
BPN). MDM infection with adv-IKK-PN (but
not control adv) significantly inhibited both
TNF-a—induced gene expression of CXCL8
(A) and hypoxia-induced nuclear accumula-
tion of phospho-p65/RelA (B) by human
MDM. (C) Hypoxia significantly increased
the expression of VEGFA, CXCL8, CXCR4,
GLUT-1, and ADM mRNA in untreated and
adenovirally infected MDM compared with
respective normoxic MDM controls. How-

ADM ever, there was no significant difference in
15 N the expression of these genes between
hypoxic MDM infected with adv-IKK-BPN or
the control adenovirus. N = 3. *P < .05 with
respect to respective normoxic group.
5 *P < .05 with respect to TNF-a + control
adenovirus group.
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of HIF-1aw and various HIF target genes was diminished in IKK-f3—
deficient BMDMs after exposure to short-term hypoxia (ie, 4 hours).??
It may be that there is a switch from acute, NF-kB-dependent hypoxic
responses in macrophages that are critical for innate immunity (eg,
bacterial infection) to an NF-kB-independent, HIF-driven response to
the chronic hypoxia present at sites such as tumors. Clearly, a detailed
investigation of the role of NF-kB in the temporal and gene-
specific responses of macrophages to hypoxia is now warranted.

Taken together, our data show that, when macrophages experi-
ence hypoxia for 18 hours, it elicits a profound change in their
expression of various tumor-promoting genes. Although this study
provides invaluable insights into the basic repertoire of such
macrophage responses, it should be remembered that macrophages
in hypoxic areas of complex tissues such as tumors are a
heterogeneous mix of cells, including immature, monocyte-like
cells and mature macrophages.® Moreover, the responses of these
cells to hypoxia will also be influenced by a host of tumor-derived
signals, such as cytokines and enzymes. Further in vivo studies are
now warranted to investigate the role of hypoxic macrophage
responses within the complex milieu of tumors.
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