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It has been found that c-Myc protein plays
a critical role in controlling self-renewal
versus differentiation in hematopoietic
stem cells. We report that c-Myc also con-
trols the fate of megakaryocyte-erythrocyte
progenitors through regulating the differen-
tiation of erythroid and megakaryocytic pro-
genitors. In addition to the significant
reduction of granulocytes/macrophages
and B and T lymphocytes because of the
reduction of their corresponding progeni-
tors, we found significantly increased
numbers of megakaryocytic progenitors
and mature megakaryocytes in bone

marrow and spleens of c-Myc-knockout
(c-Myc�/�) mice. Differentiation of erythro-
cytes was blocked at the erythroid pro-
genitor stage. This increased megakaryo-
cytopoiesis is a cell-intrinsic defect of
c-Myc-mutant hematopoietic stem cells,
as shown by transplantation studies. Fur-
thermore, we found that c-Myc is required
for polyploidy formation but not for cyto-
plasmic maturation of megakaryocytes.
Megakaryocytes from c-Myc�/� mice are
significantly smaller in size and lower in
ploidy than those of control mice; how-
ever, because of the dramatic increase in

megakaryocyte number, although fewer
platelets are produced by each mega-
karyocyte, a greater than 3-fold increase
in platelet number was consistently ob-
served in c-Myc�/� mice. Thus, c-Myc�/�

mice develop a syndrome of severe
thrombocytosis-anemia-leukopenia be-
cause of significant increases in mega-
karyocytopoiesis and concomitant block-
age of erythrocyte differentiation and reduc-
tions in myelolymphopoiesis. (Blood. 2009;
114:2097-2106)

Introduction

During normal hematopoiesis, hematopoietic stem cells (HSCs)
and their progeny continuously face a choice between 2 fates. The
most primitive HSCs, which have long-term hematopoietic recon-
stitutive ability (LT-HSCs), are localized in bone marrow (BM)
microenvironments (niches) where they either self-renew to main-
tain constant HSC numbers, ensuring life-long hematopoiesis, or
differentiate to become short-term HSCs (ST-HSCs). ST-HSCs
give rise to common lymphoid progenitors (CLPs) and common
myeloid progenitors (CMPs), which in turn differentiate to produce
T- or B-lymphocyte precursors and granulocyte/monocyte precur-
sors (GMPs) or megakaryocyte/erythroid precursors (MEPs), respec-
tively. Bipotent committed precursors such as MEPs and GMPs
undergo further fate decisions by being directed toward either the
erythroid or megakaryocytic branch or toward the granulocytic or
monocytic lineage, respectively.1 It has been suggested that these
dual-fate specification processes of HSCs and hematopoietic
progenitors are largely controlled by fate-specific transcription
factors and are regulated by stimulatory or repressive signals
produced by BM niche cells.2 Despite many efforts, the transcrip-
tion factors responsible for guiding the fate determination of HSCs
and hematopoietic progenitors have not yet been fully identified.

c-Myc, a typical oncogene, is involved in controlling a variety
of cell behaviors, including cell-cycle progression, cell prolifera-
tion, differentiation, survival, adhesion, and cell-size determina-
tion. c-Myc protein thus plays critical roles in many aspects of
biologic processes, such as embryonic development, angiogenesis,
and tissue regeneration.3,4 Deregulated c-Myc has been found in

many malignant tissues and is critical for the pathogenesis of many
types of mammalian tumors, including leukemia.5

Recent studies demonstrated that c-Myc also plays essential
roles in both embryonic and adult hematopoiesis. Studies of
epiblast-specific c-Myc deletion in mice suggested that c-Myc is
specifically required for both yolk sac primitive and intraembry-
onic definitive hematopoietic development but is not necessary for
the proliferation and development of nonhematopoietic tissues,
such as vascular endothelia. c-Myc deficiency causes apoptotic loss
of primitive erythroblasts and severely impairs definitive hemato-
poiesis. Although the anticipated number of phenotypically defini-
tive HSCs was generated in c-Myc-knockout (c-Myc�/�) mice,
c-Myc�/� HSCs/progenitors (HSC/Ps) were unable to expand in
number and differentiate to generate a significant number of
differentiated progeny. Therefore, in c-Myc�/� embryos, the percent-
age of HSCs was significantly increased, but the number of mature
blood cells was substantially reduced. However, embryonic
megakaryocyte development has not been studied in c-Myc�/�

mice.6 Inducible c-Myc�/� mouse studies have demonstrated that
c-Myc is also required for adult HSC function. c-Myc expression is
low in quiescent LT-HSCs and is up-regulated when LT-HSCs
differentiate into ST-HSCs and hematopoietic progenitors.7-10 It
was found that c-Myc represses the expression of many adhesion-
related molecules, including N-cadherin and integrin-�1, -�2, and
-�5 in HSCs, thus regulating the process of adhesion of HSCs to
the BM niche. In addition, c-Myc induces the expression of many
positive regulators of the cell cycle and also represses several
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negative regulators of the cell cycle. These 2 sets of events are
required for cell cycle progression and proliferative expansion of
hematopoietic progenitors. However, the proliferation of HSCs is
less dependent on c-Myc function. Because of BM niche-
dependent differentiation defects, which are a consequence of
enhanced BM niche adhesion, coupled with significantly impaired
proliferation of hematopoietic progenitor cells, adult HSCs with
c-Myc deletion fail to generate sufficient numbers of hematopoietic
progenitors and mature blood cells. This results in significant HSC
accumulation but also severe anemia and leukopenia in c-Myc�/�

mice.7-10 Overexpression of c-Myc promotes detachment of HSCs
from the BM niche and proliferation and differentiation, followed
by a decline in HSC numbers.8 These studies suggest that c-Myc
controls BM niche-dependent HSC self-renewal versus differentia-
tion and fate determination, as well as hematopoietic progenitor
expansion. However, the role of c-Myc in HSC/P lineage commit-
ment has not been explored.

To study whether c-Myc is generally required for the prolifera-
tion and differentiation of all lineages of hematopoietic cells and,
specifically, for the lineage commitment of HSC/Ps, we examined
hematopoietic progenitors and mature blood cells in c-Myc�/� mice
to determine whether certain hematopoietic lineages are less
affected or may even be increased after c-Myc deletion. Consistent
with findings in previous studies, we found that c-Myc�/� mice
develop severe anemia and leukopenia because of impaired erythro-
poiesis and myelolymphopoiesis.8,10 Interestingly, we also found a
3- to 5-fold increase in platelet number in c-Myc�/� mice, which
was the result of enhanced megakaryocytopoiesis.

Methods

Generation of c-Myc�/� mice

All experiments were performed in accordance with and with the
approval of Loyola University Institutional Animal Care and Use
Committee (protocol #06-013). c-Mycloxp mice7 were provided by Dr
Frederick W. Alt of the Howard Hughes Medical Institute and Children’s
Hospital (Boston, MA). They were crossed with Mx1Cre mice11 to
generate inducible c-Myc�/� mice. Three weeks after birth, all mice,
including wild-type (WT) and heterozygous controls, were injected
intraperitoneally with 25 �g of polyinosinic/polycytidylic acid (poly I:C) per
gram body weight every other day for a total of 5 injections to induce c-Myc
gene deletion.

Hematopoietic phenotype analysis

One month after the final poly I:C injection, mice were killed and peripheral
blood (PB), BM, spleens, and thymuses were collected. Cellular compo-
nents of PB of mutant mice were examined by complete blood count.
Percentages and absolute numbers of HSCs and progenitor cells were
examined in BM and spleen after cell surface marker staining as indicated
in supplemental Table 1 (available on the Blood website; see the Supplemen-
tal Materials link at the top of the online article) and by flow cytometric
analysis, as described previously.12,13 Percentages and absolute numbers of
different lineages of differentiated cells were also examined by different
combinations of cell surface marker staining as indicated in the text and by
flow cytometric analysis.

BM transplantation

To study whether the hematopoietic phenotype changes observed in HSCs
of c-Myc�/� mice were cell-autonomous, we transplanted 2 � 106 BM
nucleated cells from c-Myc�/� mice (before mutation induction) and WT
mice separately into lethally irradiated recipient mice. Six weeks after
transplantation, we examined white blood cell counts (WBC), hemoglobin

concentration, and platelet numbers of recipient mice to confirm the
complete recovery of hematopoiesis. Mice were injected with poly I:C
every other day for a total of 3 injections to induce c-Myc deletions.
One month hence, hematopoietic phenotypes of recipient mice, which had
received BM cells from c-Myc�/� mice, were analyzed and compared with
phenotypes of mice that had received WT BM cells.

CFU-S assay

One month after mutation induction, 2 � 105 BM nucleated cells from
c-Myc�/� mice and WT control mice were injected separately into lethally
irradiated recipient mice. Spleens of recipient mice were collected on day
12 for colony-counting and further analyses.

Colony-forming assay

Functional hematopoietic progenitors in BM of c-Myc�/� mice were
analyzed and compared with those of WT controls by in vitro colony-
forming assays, including granulocyte-monocyte colony-forming unit,
colony-forming unit-erythroid, and burst-forming unit-erythroid, using
MethoCult GF M3434 methylcellulose-based medium (StemCell Technolo-
gies) as previously described.13 Megakaryocyte progenitors were examined
using MegaCult-C collagen-based medium supplemented with 50 ng/mL
recombinant human thrombopoietin (TPO), 10 ng/mL recombinant mouse
(rm) interleukin-3 (IL-3), 20 ng/mL rm IL-6, and 50 ng/mL rm IL-11,
following the protocol provided by the vendor. Megakaryocytic colony-
forming unit (CFU-Mk) numbers were counted on day 8.

RT-PCR

RNA was extracted using RNeasy Plus Mini-Kit (QIAGEN). cDNA was
prepared using SuperScript First-Strand Synthesis System (Invitrogen).
Quantitative polymerase chain reaction (PCR) for detecting c-Myc levels in
normal hematopoietic cells and �1-tubulin, NF-E2, and PF4 levels in WT
and mutant megakaryocytes was performed using SYBR Green PCR
Master (Applied Biosystems). Quantitative PCRs for comparing gene
expression between WT and c-Myc�/� HSCs were performed using Taqman
technique. Information concerning primers used can be found in supplemen-
tal data. Triplicate reverse-transcribed (RT) PCRs were performed and
confirmed in 2 independent experiments.

AChE staining

Fresh-frozen spleen sections or slides with CFU-Mk colonies were fixed in
ice-cold acetone for 5 minutes. After drying at room temperature, tissue
sections and colony slides were stained with acetylcholinesterase (AChE)
staining solution containing 0.5 mg/mL acetylthiocholiniodide, 5 mM
sodium citrate, 3 mM copper sulfate, 0.5 mM potassium ferricyanide in
0.1 M sodium phosphate buffer. After a 3-hour incubation at room
temperature, the staining solution was poured off and sections were fixed in
95% ethanol for 10 minutes. Slides were counterstained with Harris
hematoxylin solution for 30 seconds.14

Propidium iodide staining of CD41� megakaryocytes

BM and spleen nucleated cells were stained with fluorescein isothiocyanate–
conjugated CD41 antibody at 4°C for 30 minutes and then permeabilized
using Perm/Wash Buffer (BD Biosciences). Cells were stained in propidium
iodide staining solution for 40 minutes at 37°C.

Histology and immunohistochemical staining

WT and mutant mice were killed, and femurs, spleens, and livers were
immediately collected. After 2 to 3 days fixation in zinc formalin, femurs
were decalcified using 10% ethylenediaminetetraacetic acid (pH 7.4) for
2 weeks. BM and spleen tissues were embedded in paraffin. Sections were
cut for hematoxylin and eosin staining or antibody immunostaining.
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Annexin-V staining

To analyze the degree of apoptosis in CD41� megakaryocytes and BM
HSC/Ps, BM was collected from c-Myc�/� and control mice 25 days after
poly I:C injections. BM cells were collected into lyse/fix buffer (BD
Biosciences) for 10 minutes to fix nucleated cells and lyse red blood cells
simultaneously. After 2 washes with cold phosphate-buffered saline/2%
fetal bovine serum, nucleated cells were adjusted to a concentration of
5 � 106/mL in 1� Binding Buffer (BD Biosciences) and aliquoted into
5-mL staining tubes at 100 �L of cells per tube. Cells were stained with
phycoerythrin-CD41 and fluorescein isothiocyanate–annexin-V (BD Bio-
sciences) for 20 minutes at room temperature. After 2 washes in 1�
Binding Buffer, cells were analyzed by flow cytometry for annexin-V–
positive cell percentage in the different cell populations.12

BrdU labeling

Mice were injected with 200 �g bromodeoxyuridine (BrdU) 4 hours before
being killed. The percentage of BrdU-positive cells among CD41�

megakaryocytes, Gr1� neutrophils, and LSK-HSCs was assessed by
cell-surface marker staining followed by cell permeabilization and BrdU
antibody staining as previously described. BrdU in situ histologic staining
was conducted as previously described.12

Statistical analyses

Student t tests were performed to assess the statistical significance of
observed changes between c-Myc�/� mice and their corresponding con-
trols. Error bars in all panels represent SEM.

Images

All pictures were taken using an Olympus Provis AX80 microscope and
captured with a Q-Imaging Retiga 4000R camera. Images were acquired
and processed using Adobe Photoshop 6.0.

Results

c-Myc expression in hematopoietic cells

To investigate whether c-Myc is generally required for the prolifera-
tion and differentiation of all lineages of hematopoietic progenitors
or whether it is selectively required for the development of certain
lineages only, we first examined the expression of c-Myc in
LT-HSCs, ST-HSCs, and committed progenitors (including CLPs,
CMPs, GMPs, and MEPs), as well as differentiated hematopoietic
cells, using quantitative RT-PCR assays. The expression levels of
c-Myc in HSC/Ps and mature hematopoietic cells were normalized
to c-Myc levels in LT-HSCs. As shown in supplemental Figure 1,
we found low levels of c-Myc expression in LT-HSCs and
significantly increased levels in ST-HSCs, CMPs, and CLPs.
However, during the differentiation of CMPs to GMPs and MEPs,
we found that c-Myc is differentially expressed in GMPs and
MEPs, with higher levels in GMPs (similar to levels observed in
CMPs) and lower levels in MEPs (similar to levels observed in
LT-HSCs). Furthermore, we found that c-Myc is also differentially
expressed during the differentiation of MEPs to megakaryocytes
and erythrocytes. Megakaryocytic progenitors (Mk-Ps) express
relatively lower levels of c-Myc than erythrocytic progenitors
(Ery-Ps). Expression levels of c-Myc are significantly down-
regulated during megakaryocyte maturation, are up-regulated dur-
ing differentiation of Ery-Ps to erythrocytic blasts (Ery-Bs), and are
significantly down-regulated during further maturation. Differ-
ences in c-Myc expression in hematopoietic cells during differentia-
tion suggest that c-Myc may play a role in HSC/P differentiation
and in lineage decisions.

Thrombocytosis in c-Myc�/� mice

To study whether c-Myc controls HSC/P lineage determination, we
generated interferon-inducible c-Myc�/� mice by crossing c-
MycloxP mice with Mx1Cre mice. We generated c-Myc�/� (MxCre�c-
Mycloxp/loxp), c-Myc heterozygous (MxCre�c-Mycloxp/�, c-Myc�/�

hereafter), and WT (MxCre�c-Mycloxp/loxp or MxCre�c-Mycloxp/�)
mice in the same litter so that each c-Myc�/� mouse had proper
controls. Exons 2 and 3 of the c-Myc gene (encoding almost the
entire c-Myc protein) in c-Mycloxp mice are flanked by 2 loxp sites.4

Deletion of these exons by Cre-mediated enzymatic recombina-
tion of loxp sites results in the complete loss of c-Myc function
in target cells. Expression of the Cre enzyme, driven by the Mx1
promoter in Mx1Cre mice, can be induced by injecting mice
with poly I:C,11 which can efficiently induce recombination of
the 2 loxp sites and deletion of the target gene in hematopoietic
cells and BM stromal cells.12

Three weeks after birth, all mice (including c-Myc�/� and WT
controls) were injected with poly I:C to induce c-Myc deletion. The
efficiency of c-Myc deletion in c-Myc�/� HSCs (� 99%) was
determined by both quantitative PCR to detect the genomic DNA
(supplemental Figure 2) and real-time RT-PCR to detect RNA
expression (Figure 2F) 20 days after poly I:C injection. Hematopoi-
etic phenotypes of the mice were analyzed one month after
mutations were induced. Because the phenotype of c-Myc�/� mice
is comparable with that of WT controls (data not shown), we
focused on c-Myc�/� and WT in our comparative studies. First, by
examining the numbers of cellular components in PB, we found
significantly reduced WBC counts (Figure 1A) because of signifi-
cant reductions of both neutrophils and lymphocytes (data not
shown), as well as severe anemia in c-Myc�/� mice compared with
their WT controls (Figure 1A). These data were consistent with
what had previously been reported.8,10 However, we consistently
observed a more than 3-fold increase in platelets in c-Myc�/� mice
compared with their WT littermate controls (Figure 1A,C-D),
which had not yet been reported. In addition, we found that platelet
size (mean platelet volume) in c-Myc�/� mice was larger than that
seen in WT mice (Figure 1A,C-D). Furthermore, we found that
megakaryocyte numbers are significantly increased in the BM and
spleens of c-Myc�/� mice compared with WT controls, as shown by
both histologic examination and flow cytometric analysis (Figure
1B,E-H and supplemental Figure 3), and further confirmed by
megakaryocyte-specific AChE staining (Figure 1I-J) as well as
CD41 and factor-VIII–related antigen immunohistochemical stain-
ing (supplemental Figure 3E). The significant thrombocytosis,
severe anemia, and grossly decreased neutrophil/monocyte and
lymphocyte numbers in the PB of c-Myc�/� mice suggested that
c-Myc might either be involved in the regulation of HSC/P lineage
commitment or be differentially required for the proliferation and
differentiation of various lineages of hematopoietic cells.

The sensitivities of various lineages of hematopoietic
progenitors to c-Myc deletion differ

To investigate whether the combined thrombocytosis, anemia, and
leukopenia phenotype of c-Myc�/� mice is the result of lineage
commitment defects in HSC/Ps, we analyzed hematopoietic progeni-
tors in c-Myc�/� BM. Consistent with previous reports, the
Lin�Sca1�c-kit� (LSK) population is significantly increased be-
cause of the dramatic elevation of LT-HSCs and the notable
increase in ST-HSCs in c-Myc�/� mice (supplemental Figure
4B,G). However, CLP, CMP, and GMP cell populations are
significantly reduced in the BM of c-Myc�/� mice, which is
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consistent with the significant reduction in mature neutrophils/
monocytes and lymphocytes (Figure 2A, supplemental Figure
4C-D).8,10 However, we found that the MEP population is less
affected in c-Myc�/� mice (Figure 2A, supplemental Figure 4C). In
addition, significant increases in CD71�, CD41�, and CD71�/
CD41� cell populations were observed in both BM and spleens of
c-Myc�/� mice (Figure 2B, supplemental Figure 4). Further studies
demonstrated that the percentages of Lin�Sca1�CD41�c-kit�CD9�

Mk-Ps (supplemental Figure 4E) and CD41�c-kit� differentiated
megakaryocytes (Figure 2C), as well as CD71�Ter119� erythro-
cytic progenitors (Ery-Ps; supplemental Figure 4F), are signifi-
cantly increased in the BM of c-Myc�/� mice compared with WT
controls. However, the percentages of CD71�Ter119� Ery-Bs and
CD71�Ter119� differentiated erythrocytes (Erys) are significantly
reduced in c-Myc�/� mice (supplemental Figure 4F). Despite the
hypocellularity of c-Myc�/� mouse BM (supplemental Figure 3B),
the absolute number of Mk-Ps is still significantly increased in
c-Myc�/� BM compared with WT; however, the number of Ery-Ps
in c-Myc�/� BM is comparable to that seen in WT controls,
whereas the number of Ery-Bs and Erys is reduced more dramati-
cally (Figure 2D). These data suggest that the differentiation of
HSCs to MEPs is less dependent on c-Myc function than is the
differentiation of HSCs to GMPs and CLPs. MEPs from c-Myc�/�

mice can differentiate to both Mk-Ps and Ery-Ps. However, because
of the differentiation blockage of Ery-Ps to Ery-Bs in c-Myc�/�

mice, more MEPs differentiate to Mk-Ps and further mature to
Mks, and finally to platelets. The significant increase in expression
levels of the MEP lineage-specific transcription factor Gata1 and
its partner gene Fog1, as well as the erythrocyte-specific gene
Eklf1, together with the significant reduction in the myeloid/
lymphocyte lineage-specific transcription factor Pu.1 in LSK-HSC/
Ps, suggested that the lineage commitment defects of c-Myc�/�

HSCs might already be determined at the HSC stage (Figure 2F).
The further increase or decrease in these transcription factors in the
c-Myc�/� lin�c-kit�sca1� (LK) progenitor cell population might
be the consequence of the increased MEP percentage within the LK
cell population in c-Myc�/� mice compared with WT controls.

Interestingly, the sensitivity of hematopoietic cells to c-Myc
deletion is well correlated to c-Myc expression levels (supplemen-
tal Figure 1). BrdU pulse-labeling indicated that the proliferation of
Gr1� granulocytes, which express relatively higher levels of
c-Myc, is significantly reduced in c-Myc�/� mice, whereas the
proliferation of CD41� megakaryocytes, which express low levels
of c-Myc, is less affected by c-Myc deletion (Figure 2E). However,
despite the obvious increase in phenotypic Mk-Ps in c-Myc�/� BM, the
colony-forming ability of these cells is compromised, as shown by the
significant reduction in megakaryocytic colonies, CFU-Mk (supplemen-
tal Figure 4H), which may be the result of the increased apoptotic cell
death of the mutant megakaryocytes (Figure 3B-C,F) or in vivo
microenvironment-dependent growth of the mutant megakaryocytes.

c-Myc is required for megakaryocyte endomitosis and
polyploidy formation but is not essential for megakaryocyte
maturation

Mk-Ps undergo endomitosis to become large polyploid cells. At the
same time, the cytoplasm matures, resulting in the formation of
proplatelets. We found that CD41� megakaryocytes from c-Myc�/�

mice are smaller than megakaryocytes from WT mice, as shown by
both histologic study (Figures 1E-J, 4) and flow cytometric analysis
(Figure 3A,D). This might be the result of a reduction in the
formation of polyploidy (Figure 3B-C). Previous studies suggested
that polyploid formation in megakaryocytes might be dependent on
the expression of cyclin D isotypes. We found that, in c-Myc�/�

MK-Ps, cyclin D1 and cyclin D2 are significantly down-regulated
(Figure 3E). In addition, we found a significant increase in
apoptosis in c-Myc�/� megakaryocytes, as shown by a significant
increase in the sub-G1 population (Figure 3C). This was confirmed
by annexin-V staining (Figure 3F) and was probably the result of the
down-regulation of expression of pro-survival genes such as Bcl-2 and
Mcl-1 (Figure 3G). The comparable levels of mature markers such as
�1-tubulin, NF-E2, and PF4 in c-Myc�/� CD41�c-kit� megakaryo-
cytes and WT megakaryocytes suggested that c-Myc may not be
essential for the cytoplasmic maturation of megakaryocytes (Figure 3H).
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Figure 1. Significant thrombocytosis in
c-Myc�/� mice. (A) Decreased WBC and hemo-
globin concentration but significantly increased
platelets in PB of c-Myc�/� mice. Enlarged plate-
let size in c-Myc�/� mice is shown as mean
platelet volume (MPV). (B) Significant increase
in the absolute number of CD41� megakaryo-
cytes but reduction in Ter119� nucleated erythro-
cytes in both BM (2 hind limbs) and spleens of
c-Myc�/� mice compared with their age- and
gender-matched WT controls. (C-D) PB smears
(Wright-Giemsa staining 100�/1.3) show in-
creased platelets in c-Myc�/� mice. (E-J) In-
crease in megakaryocyte numbers in c-Myc�/�

BM (F) and spleens (H,J), compared with WT
BM (E) and spleens (G,I), as shown by hematoxy-
lin and eosin staining (40�/0.8 air; E-H) and
confirmed by megakaryocyte-specific AChE
staining (20�/0.7 air) oil (I,J). *P � .05;
**P � .01.
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Small-sized low-ploidy megakaryocytes are able to mature and
produce platelets

It is normally accepted that large polyploid megakaryocytes produce
platelets. In c-Myc�/� mice, only small-sized low-ploidy megakaryo-
cytes are significantly increased, whereas medium- and large-sized
high-ploidy megakaryocytes are reduced (Figures 3D, 4). Therefore, we
predicted that the small megakaryocytes might produce platelets, which
contribute to the thrombocytosis phenotype of c-Myc�/� mice. To
address this hypothesis, we incubated the BM cells from c-Myc�/� mice
and WT mice in MegaCult-C Collagen-Medium supplemented with
proper amounts and types of growth factors. Two days after incubation,
proplatelet-producing megakaryocytes were analyzed by counting the
number of proplatelet projections of each megakaryocyte. After AChE
staining, the sizes of megakaryocytes were measured. We found that
small megakaryocytes, which produce fewer numbers of proplatelets,
were significantly increased in c-Myc�/� mice compared with WT
controls. These data demonstrated that low-ploidy megakaryocytes
from c-Myc�/� mice have the ability to produce proplatelets, although
fewer proplatelets are produced by each of these megakaryocytes
compared with their WT counterparts (Figure 4).

The thrombocytosis phenotype of c-Myc�/� mice is the result of
HSC cell-intrinsic defects

Mx1Cre-mediated rearrangement induces deletion of c-Myc in both
hematopoietic cells and their BM niche stromal cells. To study whether
the megakaryocytic lineage differentiation bias of c-Myc�/� HSC/Ps is
cell-intrinsic or the result of BM microenvironmental defects, we

examined whether the thrombocytosis phenotype of c-Myc�/� mice is
transplantable. We found that c-Myc�/� BM transplantation was able to
effectively regenerate HSC accumulation and thrombocytosis in the WT
BM environment. This suggested that cell-autonomous defects in
c-Myc�/� HSC/Ps were causative of the thrombocytosis-anemia-
leukopenia phenotype (Figure 5A-E). This was further confirmed by
competitive transplantation experiments (Figure 5F), as well as by
studying colony-forming units in spleen (CFU-S; Figure 5G-I). In
competitive transplantation experiments, the contribution of c-Myc�/�

HSCs to BM hematopoiesis in recipient mice is significantly lower than
that of competitor HSCs (� 6%, data not shown), which is consistent
with what was observed in previous studies.2 However, the percentage
of CD41� megakaryocytes in hematopoietic cells derived from c-Myc�/

�HSCs (CD45.2�) is significantly higher than that in hematopoietic
cells derived from competitor HSCs (CD45.1�; Figure 5F). In CFU-S
experiments, transplantation of c-Myc�/� BM cells generated relatively
smaller CFU-Ss in recipient mouse spleens, which makes counting
colony numbers difficult (Figure 5G). Histologic analysis indicated that
the CFU-Ss generated by c-Myc�/� HSC/Ps contain significantly more
megakaryocytes, as shown by flow cytometric analysis of CD41
expression and AChE staining (Figure 5H-I).

Discussion

The role of c-Myc in regulating embryonic and adult HSCs has
been well demonstrated.6,8,10 Here, we report an as yet undefined
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role for c-Myc in megakaryocytic development. We found significant
increases in megakaryocytopoiesis and reductions in erythropoiesis/
myelolymphopoiesis, resulting in a thrombocytosis-anemia-
leukopenia phenotype in c-Myc�/� mice. Two potential mecha-
nisms can explain these selective changes: (1) c-Myc controls the
lineage switch of HSC/Ps; and (2) different lineages of hematopoi-
etic cells differ in their requirement for c-Myc to regulate their
proliferation and differentiation. Our data support the latter expla-
nation. We found that the transition of CMPs to MEPs as well as the
proliferation and differentiation of MK-Ps seem less dependent on
c-Myc function than is the case for other lineages. This increased
megakaryocytopoiesis seems not to be a consequence of an
anemia-induced feedback reaction (megakaryocytes and erythro-
cytes share a common progenitor cell) because the number of
MEPs is not increased in c-Myc�/� mice and also because, in
competitive transplantation experiments, c-Myc�/� HSC/Ps gener-
ated more megakaryocytes than their WT counterparts in control
mice in which no anemia was observed (Figure 5F).

c-Myc is an oncogene known to be a target gene and effector
molecule of many leukemogenic fusion proteins. Up-regulation of
c-Myc gene has been found in patient BM samples of most types of
leukemia, including acute lymphocytic leukemia, acute myeloid
leukemia, and acute erythroid leukemia, suggesting that c-Myc
might be critical in the pathogenesis of these diseases.15-17 The
involvement of c-Myc in these types of leukemia has also been
confirmed by transgenic animal model studies.18,19 However, the
role of c-Myc in acute megakaryocytic leukemia (AMkL) has not
been explored. Interestingly, c-Myc has been found to be the major
target of Rbm15, an AMkL-related protein, which mediates the role
of Rbm15 in HSC-BM niche interactions and megakaryocytopoi-
esis in mice. The AMkL fusion protein Rbm15/Mkl1 functions in a
dominant negative fashion to down-regulate c-Myc expression in
HSC/Ps (C.N., J.Z., P.B., S.W.M. et al, unpublished data). The
significant increase in CD41�CD71� cell populations in our
c-Myc�/� mice is reminiscent of increases in the same cell
populations in some AMkL in Down syndrome persons.20 We
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propose that, in contrast to other types of leukemia, down-
regulation of c-Myc might play a role in the pathogenesis of AMkL.

Selective requirement for c-Myc in proliferation of different
populations of hematopoietic cells

c-Myc has been shown to be a critical cell cycle mediator
promoting cell cycle progression from G0/G1 to S phase by

up-regulating positive cell cycle regulators and down-regulating
negative cell cycle regulators.3,21,22 In vitro studies have suggested
that c-Myc expression is necessary and sufficient to induce
quiescent cells to enter S phase in most cells.22 Deletion of c-Myc
leads to a markedly prolonged cellular doubling time and severely
impaired cellular proliferation in response to mitogenic stimula-
tion.22,23 However, recent studies demonstrated that the role of
c-Myc in cell cycle progression and proliferation might be cell-type
specific.6,24

During early embryonic development, c-Myc is highly ex-
pressed in hematopoietic cells and is specifically required for
proliferation and differentiation of HSC/Ps. However, proliferation
in most nonhematopoietic tissues is not affected by c-Myc deletion
at this developmental stage.6,25 Conditional c-Myc knockout studies
suggested that the proliferation of a subset of cells in adult tissues is
c-Myc-independent.26,27 Indeed, the requirement of c-Myc for
oncogenesis can sometimes be replaced by other oncogenic
events.28 All of these studies suggested that the requirement for
c-Myc in cell cycle progression and proliferation might be cell
context-dependent. Whether this is the result of compensation by
other Myc family members such as N-Myc or L-Myc requires
further study in Myc compound-mutant mice.9,29

We found that the proliferation of HSCs is independent of
c-Myc, consistent with previous reports.8 In addition, we found that
megakaryocyte proliferation is also not affected by c-Myc deletion.
However, the proliferation of neutrophils is significantly impaired
in c-Myc�/� mice. Why c-Myc is selectively required for the
proliferation of other hematopoietic cells but not for HSCs and
megakaryocytes is an important topic to be addressed in future
studies. Currently, we cannot rule out the possibility of compensa-
tion by other Myc family members in HSCs and megakaryocytes,
although we found no alterations in the expression of either N-Myc
or L-Myc in HSCs and megakaryocytes. Nor are these genes altered
in neutrophils after c-Myc is deleted (supplemental Figure 5).

Selective requirement for c-Myc in differentiation of certain
types of hematopoietic progenitors

Previous transgenic studies suggested that c-Myc might be in-
volved in regulating lineage specification in epidermal stem cells.30

The molecular mechanism underlying this process is not yet
known. It is commonly accepted that overexpression of c-Myc
promotes cell proliferation and blocks full maturation in tissue
progenitor cells, thereby inducing abnormal growth of tissue cells
and tumor formation.31 However, high levels of c-Myc might also
induce apoptosis in certain cell types because of elevated p53 levels
via activation of the Arf-Mdm2-p53 pathway.32 Interestingly, some
types of cells might be relatively more resistant to c-Myc-induced
apoptosis. This could explain why c-Myc transgenic mice tend to
develop certain histologic tumor types but not others.18,33

Whether c-Myc is physically involved in cell lineage decisions
is unknown. We found that, compared with GMPs and CLPs, the
number of MEPs is less affected in c-Myc�/� mice. Furthermore,
Mk-Ps and mature Mks are significantly increased, whereas Ery-Ps
are less affected; Ery-Bs and mature Erys are significantly reduced.
These data indicate that c-Myc is more important for the develop-
ment of certain lineages of hematopoietic cells (such as CMP to
GMP to granulocytes and Ery-Ps to Ery-Bs to mature erythrocytes)
than other lineages (such as MEP to Mk-Ps to mature Mks). We do
not think that this is because other lineages of hematopoietic cells
are more heavily reliant on c-Myc for their survival than megakaryo-
cytes because we found that, in c-Myc�/� mice, apoptosis is even
greater in megakaryocytes than in other lineages. Our data support
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the idea that megakaryocytes are less reliant on c-Myc for their
proliferation and differentiation than other lineages. Actually, the
effect of c-Myc deletion on hematopoietic cells correlates well with
c-Myc expression; cells expressing higher levels of c-Myc (such as
GMPs, CLPs, and Ery-Bs) are significantly reduced, whereas cells
expressing lower levels (HSCs, MEPs and megakaryocytes) are
less affected or are even increased in number.

The role of c-Myc in regulating bifate differentiation of MEPs
to megakaryocytes or erythrocytes has not been explored. In vitro
studies using cell lines demonstrated that c-Myc is required for
proliferation of both megakaryocyte and erythrocyte progenitors;
c-Myc expression is down-regulated during this process.34,35 Trans-
genic overexpression of c-Myc in MEPs, driven by the Gata1
promoter, leads to erythroid leukemia development.36 However,
megakaryocytic lineage-specific c-Myc overexpression under the
control of the platelet factor-4 promoter yields only a slight
increase in the frequency of low-ploidy megakaryocytes because of
enhanced proliferation and survival along with the blocking of
differentiation.37 We found that c-Myc�/� MEPs can differentiate to
both Ery-Ps and Mk-Ps. However, c-Myc is required for Ery-Ps to
differentiate to Ery-Bs. Therefore, erythrocyte differentiation is
blocked at the Ery-P stage in c-Myc�/� mice, whereas further

maturation of megakaryocytes and platelet production might not
rely on c-Myc. The role of c-Myc in the fate determination of MEPs
was further confirmed by c-Myc overexpression and in vitro
culture studies (supplemental Figure 6). Furthermore, our data
suggest that c-Myc is necessary for polyploidy development and
increased cell size in megakaryocytes but is not required for
cytoplasmic maturation or platelet production in megakaryocytes.

Several hematopoietic transcription factors, including Gata11/
Fog1, Fli-1, and Eklf, have been shown to be critical for the
commitment of HSC/Ps to megakaryocytic or erythrocytic lin-
eages. Fog1 forms a complex with Gata1, which is essential for
both megakaryocytic and erythrocytic differentiation.38,39 Overex-
pression of Gata1 converts CLPs and GMPs to the megakaryocyte/
erythrocyte lineages.40 Mice with Gata1 and Fog1 deletions
develop significant thrombocytopenia and anemia.41,42 Eklf is
expressed in MEPs and erythrocytes, being essential for erythro-
cyte maturation but limiting megakaryocyte differentiation.43 Fli-1
functions conversely to Eklf; the former promotes megakaryocytic
lineage differentiation while restricting commitment to the ery-
throid lineage.44 Interestingly, in our c-Myc�/� HSC/Ps, Gata1,
Fog1, and Eklf are all up-regulated, whereas Fli-1 is significantly
down-regulated (Figure 2F), contrary to what we expected. We
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propose that c-Myc might function downstream and independently
of these hematopoietic transcription factors in the lineage commit-
ment and differentiation process.

c-Myb also plays a critical role in regulating HSC self-renewal
and lineage commitment.45,46 Inactivation of c-Myb activity results
in significant accumulation of HSCs in BM and a differentiation
bias toward megakaryocytes over erythrocytes and lympho-
cytes. The significant thrombocytosis and severe anemia pheno-
type of c-Myb mutant mice are reminiscent of the phenotype of
our c-Myc�/� mice. We found that c-Myb regulates c-Myc
expression in HSCs/Ps (supplemental Figure 7), consistent with
previous observations in cell line studies.47 We propose that
c-Myc might be a downstream target of c-Myb, mediating
c-Myb functions in HSC/Ps.

TPO has been shown to be a key hematopoietic cytokine for
megakaryocytopoiesis.48 TPO signaling is also essential for the
maintenance of hematopoietic homeostasis by restricting HSCs
within a quiescent state in the BM niche and promoting HSC
self-renewal after transplantation.49,50 Interestingly, in contrast
to other hematopoietic cytokines that induce c-Myc expression,
TPO down-regulates c-Myc expression in HSC/Ps49 (and our
unpublished data). Thus, we speculate that down-regulation of
c-Myc expression might be one aspect of lineage specification of
this cytokine.
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