
MYELOID NEOPLASIA

Brief report

Genetic characterization of TET1, TET2, and TET3 alterations in myeloid
malignancies
Omar Abdel-Wahab,1,2 Ann Mullally,3,4 Cyrus Hedvat,5 Guillermo Garcia-Manero,6 Jay Patel,1 Martha Wadleigh,3

Sebastien Malinge,7 JinJuan Yao,5 Outi Kilpivaara,1 Rukhmi Bhat,7 Kety Huberman,1 Sabrena Thomas,1 Igor Dolgalev,1

Adriana Heguy,1 Elisabeth Paietta,8 Michelle M. Le Beau,9 Miloslav Beran,6 Martin S. Tallman,7 Benjamin L. Ebert,4,10,11

Hagop M. Kantarjian,6 Richard M. Stone,3 D. Gary Gilliland,4,10-12 John D. Crispino,7 and Ross L. Levine1,2

1Human Oncology and Pathogenesis Program, and 2Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY;
3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; 4Division of Hematology, Department of Medicine, Brigham and Women’s
Hospital, Boston, MA; 5Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY; 6Department of Leukemia, M. D. Anderson Cancer
Center, Houston, TX; 7Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL; 8Montefiore Medical Center–North
Division, New York Medical College, New York; 9Section of Hematology/Oncology, University of Chicago, IL; 10Harvard Stem Cell Institute, Boston, MA; 11Broad
Institute of Harvard and Massachusetts Institute of Technology, Boston; and 12Howard Hughes Medical Institute, Harvard Medical School, Boston, MA

Disease alleles that activate signal trans-
duction are common in myeloid malignan-
cies; however, there are additional uniden-
tified mutations that contribute to myeloid
transformation. Based on the recent iden-
tification of TET2 mutations, we evalu-
ated the mutational status of TET1, TET2,
and TET3 in myeloproliferative neoplasms
(MPNs), chronic myelomonocytic leuke-
mia (CMML), and acute myeloid leukemia

(AML). Sequencing of TET2 in 408 paired
tumor/normal samples distinguished be-
tween 68 somatic mutations and 6 novel
single nucleotide polymorphisms and
identified TET2 mutations in MPN (27 of
354, 7.6%), CMML (29 of 69, 42%), AML (11
of 91, 12%), and M7 AML (1 of 28, 3.6%)
samples. We did not identify somatic TET1
or TET3 mutations or TET2 promoter hy-
permethylation in MPNs. TET2 mutations

did not cluster in genetically defined MPN,
CMML, or AML subsets but were associ-
ated with decreased overall survival in
AML (P � .029). These data indicate that
TET2 mutations are observed in different
myeloid malignancies and may be impor-
tant in AML prognosis. (Blood. 2009;114:
144-147)

Introduction

Our understanding of the molecular pathogenesis of myeloid
malignancies, most notably acute myeloid leukemia (AML) and
chronic myeloid leukemia (CML), has largely resulted from the
identification and characterization of recurrent chromosomal trans-
locations.1 However, in many patients with myeloproliferative
neoplasms (MPNs) and chronic myelomonocytic leukemia
(CMML), recurrent clonal cytogenetic abnormalities are not ob-
served. More recently, DNA resequencing studies of candidate
genes,2 gene families,3,4 and the cancer genome5 in MPN, CMML,
and AML have identified somatic mutations in FLT3,6 JAK2,7-13

MPL,14,15 and the RAS family of oncogenes.16 These discoveries
demonstrate activation of signal transduction pathways is a com-
mon pathogenic event in myeloid malignancies and have led to the
development of molecularly targeted therapies. However, with the
exception of CML, these therapies have yet to substantively
improve outcomes for patients with myeloid malignancies.17,18

This may reflect insufficient target inhibition, or, alternatively, this
may indicate incomplete dependence on these activated pathways
resulting from the presence of additional somatic mutations with
prognostic, therapeutic, and biologic relevance.

The role of TET (Ten-Eleven Translocation) family gene
members in hematopoietic transformation was thought to be
restricted to the involvement of TET1 as a translocation partner

MLL-translocated AML, until the recent identification of inactivat-
ing mutations in TET2 in MPN and MDS patients.19 We therefore
sought to evaluate a large set of MPN, CMML, and AML samples
for somatic TET2 alterations. We sequenced all coding exons of
TET2 in 408 paired tumor/normal samples and then assessed the
frequency of somatic TET2 mutations in 606 patients with MPN,
CMML, and AML. We also investigated whether deletion or
epigenetic inactivation of TET2 are observed in MPN and evalu-
ated MPN patients for somatic mutations in TET1 and TET3.

Methods

Patients

DNA was isolated from peripheral blood and/or bone marrow from
606 MPN, CMML, and AML samples. Matched normal DNA was available
for 408 samples, including 354 sporadic MPN samples, 26 CMML samples,
and 28 affected members of MPN pedigrees. Blood/bone marrow DNA but
not matched normal DNA was available for 198 samples, including
3 sporadic MPN samples, 20 affected members of MPN kindreds, 96 AML
samples, 45 CMML samples, and 34 M7 AML samples (16 from the
Eastern Cooperative Oncology Group). Approval was obtained from the
institutional review boards at the Dana-Farber Cancer Institute and at
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Memorial Sloan-Kettering Cancer Center for these studies, and informed
consent was provided according to the Declaration of Helsinki.

Sequence analysis of TET1, TET2, and TET3

DNA resequencing of all coding exons of TET1-3 was performed (primers/
conditions are listed in supplemental Table 1, available on the Blood
website; see the Supplemental Materials link at the top of the online article).
Nonsynonymous alterations not present in single nucleotide polymorphism
(database [db]SNP) were annotated as somatic mutations or SNPs based on
sequence analysis of matched germ line DNA. Nonsynonymous alterations
not in dbSNP nor determined to be somatic in paired samples or in recently
reported data19 were censored. All somatic mutations were validated by
resequencing nonamplified DNA.

Copy number analysis of TET1, TET2, and TET3

A total of 207 MPN tumor samples were analyzed using Affymetrix 250K
StyI Arrays.20 The JAK2V617F-mutant AML cell lines HEL and SET2 were
analyzed using Affymetrix 6.0 SNP Arrays.

Methylation-specific polymerase chain reaction

Methylation of 2 CpG islands in the promoter region of TET2 was assessed
in 37 MPN patients and 4 JAK2V617F-positive leukemia cell lines (SET2,
MBO2, HEL, UKE1). Methylation-specific polymerase chain reaction was
performed as previously described (primers are listed in supplemental
Table 1).21

Statistics

Statistical analyses were performed using MedCalc (MedCalc).

Results and discussion

Sequence analysis of all coding exons of TET2 in 408 paired
tumor/normal samples identified 8 frameshift, 12 nonsense, and
37 nonsynonymous alterations not present in dbSNP. Analysis of
germ line DNA distinguished between 31 somatic missense
mutations and 6 unannotated SNPs (Table 1; supplemental Figure
1); all unannotated SNPs were observed in matched normal tissue
in at least 2 samples. All frameshift and nonsense mutations were
not present in matched normal tissue. The strategy of paired
sequencing of normal and tumor tissue is critical for accurate
annotation of candidate mutations as 2 novel SNPs, which were
recently reported as TET2 mutations (Q1084P and Y867H)22 were
present in the germ line in multiple patient samples consistent with
their being unannotated SNPs. After defining the spectrum of
somatic TET2 mutations in paired tumor/normal samples, we
determined the frequency of TET2 mutations in MPN (7.6%,
including 9.8% polycythemia vera, 4.4% essential thrombocythe-
mia, and 7.7% primary myelofibrosis), CMML (42.1%), AML
(12.1%), and acute megakaryoblastic leukemia (3.6%). We identi-
fied biallelic/homozygous TET2 mutations in 1 of 354 MPN
patients and in 7 of 69 CMML patients (P � .001, Fisher exact
test). Sequencing of TET2 in 48 affected members from 28 MPN
kindreds identified somatic TET2 mutations in 7 affected persons.
We also identified 4 germ line nonsynonymous variants in affected
members of MPD kindreds present in dbSNP that could represent
rare familial MPN alleles. However, 3 of these 4 SNPs were
observed in only some affected members of kindred but not others,
and the fourth variant (M1701I) is observed in many sporadic
MPN, CMML, and AML cases. Somatic TET2 mutations were not
noted in the 4 JAK2V617F-positive leukemic cell lines.

We did not identify methylation at either of 2 CpG islands of the
TET2 promoter in 37 MPN samples or in 4 JAK2V617F-positive
leukemic cell lines (supplemental Figure 2). Copy number analysis
of 207 MPN patients identified 3 patients with heterozygous
deletions of one copy of the region containing TET2 (4q24),
suggesting that TET2 mutations are more common than large
deletions in MPN patients. Sequencing data from these 3 patients
revealed that one patient had a homozygous somatic missense
mutation, consistent with heterozygous mutation followed by
deletion of the remaining copy of TET2 (supplemental Figure 3).
The HEL cell line had a heterozygous deletion of the TET2 locus.
One MPN patient had a large deletion on chromosome 10, which
included the TET1 locus (10q21.3). Furthermore, although we
identified several novel SNPs in TET1 and TET3 (supplemental
Table 3), we did not identify somatic TET1 or TET3 mutations in
96 MPN patients. No MPN samples or cell lines had loss of the
TET3 locus (2p13.1) or amplifications of TET1, TET2, and TET3.

The frequency of TET2 mutations did not differ between
JAK2V617F-positive (16.4%) and JAK2V617F-negative (2.5%)
MPN (P � .08, Fisher exact test). Likewise, TET2 mutations were
equally frequent in MPN patients with and without the recently

Table 1. Novel TET2 somatic missense mutations and unannotated
SNPs in 4q24

Alteration
Nucleotide

change
Genomic

coordinate
Amino acid

change

Somatic mutation 434G3A 106374983 S145N

Somatic mutation 935A3G 106375484 N312S

Somatic mutation 1379 C3T 106375928 S460F

Somatic mutation 1997A3G 106376546 D666G

Somatic mutation 2821 C3T 106377370 P941S

Somatic mutation 3403G3A 106377953 C1135Y

Somatic mutation 3575T3G 106383519 C1194W

Somatic mutation 3609 A3T 106384192 S1204C

Somatic mutation 3639 C3T 106384222 R1214W

Somatic mutation 3724 A3T 106384307 D1242V*

Somatic mutation 3733A3C 106384316 Y1245S

Somatic mutation 3780 C3T 106384363 R1261C

Somatic mutation 3781G3A 106384364 R1261H*

Somatic mutation 3862G3T 106400285 G1289V

Somatic mutation 4074 C3T 106410247 R1358C*

Somatic mutation 4080G3C 106410253 G1360R

Somatic mutation 4248G3T 106413237 V1417F

Somatic mutation 5151G3T 106416269 V1718L*

Somatic mutation 5268C3G 106416386 H1757D

Somatic mutation 5283 A3T 106416401 Q1828L

Somatic mutation 5430 T3C 106416548 C1811R

Somatic mutation 5617 T3C 106416735 I1873T*

Somatic mutation 5641A3G 106416759 H1881R*

Somatic mutation 5698 T3C 106416816 V1900A

Somatic mutation 5754 C3T 106416873 A1919V

Somatic mutation 5776G3A 106416894 R1926H

Somatic mutation 5780G3A 106416898 R1927K

Somatic mutation 5820 C3T 106416938 P1941S

Somatic mutation 5896G3A 106417014 R1966H

Somatic mutation 5920 C3T 106417038 R1974M

Somatic mutation 5998G3A 106417116 R2000K

SNP 100 C3T 106374649 L34F

SNP 520C3A 106375069 P174H

SNP 2599 T3C 106377148 Y867H

SNP 3418 A3T 106377767 E1073V

SNP 3451A3C 106377800 Q1084P

SNP 5166 C3T 106416284 P1723S

Novel unannotated SNPs in 4q24. SNPs were defined as missense mutations
that were seen in more than one tumor and paired buccal sample.

*Somatic missense mutations that occurred in more than 2 samples.
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described JAK2V617F-positive MPN predisposition haplotype
(P � .9).20 We did not note a correlation between TET2 alterations
and mutations in FLT3, JAK2, and RAS in CMML, nor did we
observe a correlation between TET2 mutations and specific cytoge-
netic subgroups MLL, FLT3, CEBPA, or NPM1 mutations, or a
history of antecedent MPN/MDS in AML (P � .5, Fisher exact
test). However, we did note that TET2 mutations are associated
with decreased overall survival in AML compared with TET2-wild-
type AML patients (P � .03, Figure 1D; supplemental Table 2).

In this report, we sequenced all coding exons of TET2 to define
the spectrum of somatic TET2 mutations in myeloid malignancies.
The broad range of myeloid disorders linked to mutations in TET2
suggests that mutations in TET2 have a pleiotropic role in myeloid
transformation. Although our data suggest that TET2 mutations
may hold prognostic significance in AML, larger clinical correla-
tive studies will be needed to more accurately assess the effect of
TET2 mutations on prognosis, diagnosis, and therapeutic relevance
to myeloid malignancies. Whether TET2 mutations dysregulate
pathways already known to contribute to hematopoietic transforma-
tion, or represent a novel pathway, remains to be elucidated, and the

role of TET family alterations in neoplasms other than myeloid
malignancies is not yet known.
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