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The past decade has shown a marked
increase in the use of high-throughput
assays in clinical research into human
cancer, including acute myeloid leukemia
(AML). In particular, genome-wide gene

expression profiling (GEP) using DNA
microarrays has been extensively used
for improved understanding of the diagno-
sis, prognosis, and pathobiology of this
heterogeneous disease. This review dis-

cusses the progress that has been made,
places the technologic limitations in per-
spective, and highlights promising future
avenues. (Blood. 2009;113:291-298)

Introduction

Acute myeloid leukemia (AML) is characterized by a maturation
block and accumulation of myeloid progenitor cells.1,2 Clinically, it
has been recognized as a heterogeneous disorder.1,2 Laboratory
support for that notion has come from various directions. Chromo-
somal abnormalities and gene mutations are common in AML,
many of which are apparent in particular subtypes.3,4

Classification of AML subtypes is clinically relevant, as particu-
lar abnormalities are associated with distinct clinical behavior.1 For
instance, recurring reciprocal translocations t(15;17)(q22;q21),
t(8;21)(q22;q22), or inv(16)(p13q22)/t(16)16(p13;q22), further ab-
breviated as t(15;17), t(8;21), and inv(16), respectively, predict
favorable prognosis, whereas other chromosomal aberrations are
associated with inferior outcome.1 Likewise, sequence mutations in
certain genes are associated with either favorable or unfavorable
response to treatment.4

Insight into cytogenetic and genetic aberrations is invaluable for
diagnosis, and it may also allow for better understanding of the
pathobiology. Furthermore, it may enable the development and
application of specific treatment modalities targeted to underlying
oncogenic abnormalities. The efficacy of such drugs as all-trans
retinoic acid for the treatment of t(15;17) AML and imatinib for
BCR-ABL–positive chronic myeloid leukemia offer well estab-
lished examples.5

Despite great progress, much of the heterogeneity of AML
remains to be resolved. A significant proportion of human AML
appears cytogenetically and genetically normal, which implies that
the underlying molecular abnormalities are still unknown. Further-
more, it is likely that in AMLs carrying recognizable aberrations
additional hits await to be uncovered, as one lesion usually does not
appear sufficient for full leukemic transformation.6

In recent years, DNA microarrays, together with the availability
of the complete nucleotide sequence of the human genome, have
spurred the search for abnormalities in cancer, including AML.7

The accessibility of these tools allows assessment of abnormalities
and variations on a genome wide basis, covering various molecular
levels.8 Gene expression profiling (GEP) is one of these technolo-
gies, in which DNA microarrays containing cDNAs or oligonucle-

otide probes are used to simultaneously measure levels of many
different mRNA transcripts.7-10 In an early landmark study in 1999,
Golub and colleagues were able to use GEP to discriminate a
collection of AML from acute lymphoblastic leukemia (ALL)
specimens.11 Their study suggested 3 important potential applica-
tions of GEP: class discovery, class prediction and class compari-
son. Class discovery refers to the identification of new subgroups
while for class prediction one uses gene expression data to predict
already defined subgroups. These 2 applications therefore have
diagnostic implications. The third proposed application, class
comparison, refers to the identification of genes that are deregu-
lated in certain subgroups, and may address biologic questions.
Given these proposed possibilities, investigators have used DNA
microarrays to investigate gene expression in clinical AML samples
in the past years.12-14

Now, some 10 years later, we shall discuss the results of a
decade of experience with GEP as regards diagnosis, prognosis and
biology of AML in the context of clinical studies. Is it possible to
identify new clinically relevant subgroups of AML using GEP?
Does GEP deserve a place in clinical diagnosis? Does GEP allow
prediction of prognosis? And is it possible to extract new insights
into the pathobiology of AML from clinical GEP data?

Can GEP identify new subgroups of AML?

A straightforward way of using GEP is to compare expression
profiles between cases of AML and to search for similarities and
differences. In an unsupervised approach this is done in an
unbiased way, ie without the use of external information such as
mutations or karyotypic subtypes. This procedure is therefore
representative of class discovery. The grouping of cases according
to similar gene expression signatures is often referred to as
clustering.15,16 The underlying assumption is that cases with the
same gene expression profiles may carry the same genetic abnormal-
ity. Support for this hypothesis has come from observations, now
confirmed by several research groups, that particular cytogenetic
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AML subtypes (eg, AMLs with t(8;21), t(15;17), and inv(16)) each
share distinctive GEP profiles (Figure 1A).17-23 Likewise, muta-
tions in CCAAT/enhancer binding protein alpha (CEBPA), and to a
lesser extent nucleophosmin (NPM1) (Figure 1A), correlate with
gene expression signatures that appear after unsupervised
clustering.22,24

The potential of GEP to uncover new subgroups has been
illustrated for several types of cancer, such as cutaneous malignant
melanoma, diffuse large B-cell lymphoma, breast cancer, and acute
lymphoblastic leukemia.25-28 In AML, several GEP cohort studies
have been performed in the last few years. In many of those, new
subgroups were discerned. In a cohort of 166 cases of AML,
2 subgroups of normal karyotypes with distinguishable expression
profiles were identified.21 The investigators postulated that this
subdivision of the normal karyotype group could be diagnostically
relevant, but noted an association of the 2 subgroups with known
factors: internal tandem duplications (ITDs) in fms-like tyrosine
kinase 3 (FLT3) and FAB-M4 and M5 monocytic leukemias,
respectively. In another dataset, of 285 AMLs, 16 subgroups were
recognized, several of which lacked previously known denomina-
tors.22 A different study divided 170 cases of AML, mostly patients

of older age lacking favorable cytogenetic features, into 6 sub-
groups, some of which appeared novel.29

Unsupervised analyses have also been performed to uncover
heterogeneity within established AML subtypes. In a set of
166 AMLs, the core binding factor (CBF) AMLs, ie cases with
t(8;21) or inv(16), each could be split into subgroups merely based
on the GEP data, which was subsequently reproduced in another
study.21,30 These observations suggested that CBF leukemias in
terms of gene expression patterns may represent heterogeneous
entities. In 130 cases of pediatric AML, heterogeneity within CBF
leukemias was seen as well, particularly within AML inv(16).23

In each of the above studies, GEP revealed previously unrecog-
nized heterogeneity of AML. But is this diversity relevant? As
cluster algorithms, by definition, focus on similarities between
cases, a newly identified group of AMLs does not necessarily have
biologic or clinical importance. The biologic significance of a
newly identified subgroup would be convincingly substantiated by
the subsequent discovery of a related underlying defect or correla-
tion with a characteristic clinical phenotype or treatment response.
Alternatively, validation of a signature in one or more independent
datasets would provide support that the novel subgroup is stable.

Figure 1. Summary of GEP findings in a cohort of 285 cases of AML. (A) A previous study of 285 cases of AML revealed 16 subgroups (clusters) of cases based on
similarities in gene expression profiles.22 Pairwise correlations between these AML cases are shown on the left. The cells in the visualization are colored by Pearson correlation
coefficient values, with deeper colors depicting higher positive (red) or negative (blue) correlations, as indicated by the scale bar. Five of the 16 clusters have been labeled as
clusters 4, 5, 9, 12, and 13. One finding of the original study was the tight aggregation into distinct clusters of AML cases with cytogenetic abnormalities that predict good risk.
For those cases, cytogenetic status is color-coded in the cytogenetics column: inv(16) is yellow, next to cluster 9; t(15;17) is orange, next to cluster 12; and t(8;21) is pink, next to
cluster 13. A subsequent study in the same patient cohort identified NPM1 mutations in 95 of 285 cases. NPM1 mutational status is depicted next to each case (red indicates
NPM1 mutant; green, NPM1 wild-type).24 The figure illustrates that NPM1 mutations were not randomly distributed over the 16 previously defined clusters, but enriched in
several of them. Cluster 4 was found to associate with CEBPA mutations (red indicates CEBPA mutant). However, a subset of 6 patients in this cluster did not show any CEBPA
mutation (green indicates CEBPA wild-type). It was found that these cases differed in their CEBPA mRNA expression as compared with the CEBPA mutant AMLs, as indicated
by the histograms depicting signal intensity values for the CEBPA probe set on the microarray. In fact, whereas CEBPA mutant AMLs highly expressed CEBPA mRNA,
expression was silenced in the cases lacking mutations. This silencing was associated with CEBPA DNA promoter hypermethylation (red indicates methylation; green, no
methylation). In addition, NOTCH1 mutations were found as common characteristics of this subgroup (red indicates NOTCH1 mutation; green, NOTCH1 wild-type).31 (B) In the
original analysis of 285 AML cases (panel A left), the 44 cases in cluster 5 aggregated very tightly, as indicated by the deep red colors representing positive Pearson correlation
coefficients. Most of these 44 cases showed a monocytoid morphology (FAB-M4 or -M5).22 This raises the possibility that a significant part of the clustering effect was caused
by specific up- or down-regulation of genes that are important in monocytic differentiation, resulting in a different signature than the remaining, mostly nonmonocytoid, cases of
AML in the study. To answer whether gene expression profiling would enable identification of potential heterogeneity within this apparently homogeneous subgroup, in panel B
the 44 cases were reclustered as an isolated cohort. For this analysis, only probe sets that showed a variable expression within these 44 AML cases were taken into account, as
defined by a fold change of 3.5 to the mean in log2 scale in at least 1 case. The resulting cluster image shows that several potentially interesting subgroups can indeed be
identified within these 44 AML cases, which have been indicated by gray lines.
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Evidence indicating that the detection of a distinctive gene
expression subtype indeed can lead to the discovery of a
biologically and clinically significant subgroup has recently
been demonstrated by the identification of a distinct form of
leukemia characterized by epigenetic CEBPA silencing and an
immature myeloid/T-lymphoid phenotype (Figure 1A).31 Impor-
tantly, these findings could be confirmed in an independent
cohort of human AML. Studies like these show how complement-
ing technologies can be used to make full use of the wealth of
GEP data for subgroup discovery. Evidently, for successful
subgroup discovery it is important to have access to sufficiently
large series of cases that represent the variable subtypes of
AML. Compatibility of platforms and data sharing through
online repositories can facilitate the latter.32,33

Interpretation of the results of GEP studies
for class discovery

While GEP has been demonstrated to offer robust and reproducible
technology in the analysis of cohorts of AML,21-23 one should
remain well aware of the factors that may affect the results. We
discuss here some of the most important of those factors in the
context of class discovery, although many will also affect class
prediction and class comparison.

Differences in study design may determine the probability of
the discovery of disease heterogeneity. Variations in the selection
of study populations, in terms of size as well as demographic
diversity, will have a direct impact on experimental results.
Furthermore, various technical differences between studies may
influence results, ranging from sample processing and mRNA
isolation to microarray hybridization and analysis. Interstudy
variations with regard to the bioinformatic and biostatistical
approaches, which involve choices regarding data normalization,
gene filtering, and clustering procedures, may exert marked effects
on outcome of the analysis.10,34 Most cluster algorithms present
results in a 2-dimensional way, in which slight changes in
calculation may move samples from one cluster to another. Such
analytical differences will most likely not have a major influence
on subgroups with very distinctive signatures, but may have an
effect on the identification of more subtle differences.

It is important to keep in mind that GEP based clustering is
driven by similarities and differences in gene expression profiles
between samples. The similarities could be caused by shared
underlying genomic defects—which is what most researchers are
primarily interested in—but could also be caused by factors that are
not directly related to pathogenetic mechanisms, for example,
similarities in maturation phenotype of the leukemias. This has
indeed been observed in AML. In 2 relatively large studies, AMLs
with monocytoid morphologies (FAB-M4-M5 leukemias) showed
a tendency to aggregate according similar gene expression pat-
terns.21,22 The differences in predominant maturation stage of the
leukemias may also have influenced the aggregation of CEBPA
mutant cases into 2 gene expression clusters, one cluster
including cytologically more immature leukemias.22,31 Such
pitfalls in the analysis of GEP for subgroup discovery may
explain why the number of novel subtypes of AML reliably
identified by GEP have remained relatively limited.

How can the potential of GEP for discovery of novel subgroups
of AML be enhanced? In the search for pathogenetically relevant
differences between leukemias, one would wish to avoid the

interference of effects of phenotypic differences. One way of
achieving this would be to restrict the analysis to relatively
homogeneous populations. The feasibility of avoiding unwanted
background differences that might obscure interesting pathogenetic
differences in a selected predefined AML group was demonstrated
by investigators who established 2 gene expression profiles of
non–Down syndrome–associated acute megakaryoblastic leuke-
mia.35 Similarly, it has been noted that distinct subgroups can be
found within the preselected t(15;17) AML subtype.36 Likewise,
the 44 AMLs of a previously established cluster that strongly
associated with FAB-M4 and M5 leukemias exhibited notable
internal heterogeneity when studied as an isolated population
(Figure 1B). Studies dealing with purified progenitor cells will also
be instrumental for exclusion of interfering transcriptional back-
ground. Accumulating evidence suggests the existence of leukemia
stem cells.37,38 Profiling of those cells, instead of total blast
populations, may enhance the possibilities of GEP for subgroup
discovery. Focusing on the leukemic stem cell may also reveal
stronger transcriptional profiles that may be buried only in
subclones. However, this approach directly depends on the
accepted definition of immunophenotypic markers of leukemic
stem cells and suffers from the technical drawback of rare stem
cell numbers. Another opportunity for class discovery lies in the
application of improved analytical procedures. A notable ex-
ample is the use of pathway oriented analyses, which allow the
discovery of distorted functional networks of genes as opposed
to gene-based approaches.39,40

Do genome-wide gene expression analyses
deserve a place in clinical diagnosis?

Several techniques are currently used in the initial diagnosis of
AML, including cytology, immunophenotyping, karyotyping, poly-
merase chain reaction (PCR), and fluorescence in situ hybridization
(FISH). Because a GEP-based approach allows detection of many
transcripts at the same time, it provides a transcriptional snap shot
of the leukemia. Several research groups have investigated the
possibility to define specific gene expression classifiers (also
referred to as class predictors) for disease subtypes, eg a
discriminative set of genes for AML with the t(8;21) transloca-
tion. This procedure of class prediction through the generation
of classifiers differs from class discovery, as discussed in the
first section, in one important aspect: it makes use of external
information, such as absence or presence of t(8;21), to derive a
signature that can subsequently be used for prediction of
samples of leukemia of which the status is not known yet. This
type of approach is, therefore, often referred to as supervised.

AMLs defined by t(8;21), AML inv(16) and acute pro-
myelocytic leukemia with t(15;17) have consistently been found
to be predictable using gene expression classifiers with almost
100% accuracy.17,22,23,41 For AMLs with 11q23 rearrangements
involving the mixed lineage leukemia (MLL) gene, reported
prediction accuracy in a study within several types of human
leukemia was approximately 90%, while this was 95% in a study
on pediatric AML.23,41 Efforts to derive gene expression classifi-
ers for AMLs with other chromosomal abnormalities have as yet
met little success. Thus, for instance AML with chromosomal
abnormalities involving trisomy 8, complex karyotype and 3q
appear not to be accurately predictable by GEP in representative
cohorts of AML.20,21,41
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Prediction of mutations in CEBPA and NPM1 has also been
pursued.22,24 In one study, correct prediction of most NPM1
mutation positive cases was possible, albeit at the expense of a
significant number of false positives, resulting in a positive
predictive value of 70% to 75%.24 This would create a hurdle when
GEP would be used for diagnostic purposes. For CEBPA mutations,
prediction accuracy may be dependent on the type of mutation.
While biallelic mutations, which are relatively frequent, appear to
be predictable with a gene expression classifier with high positive
and negative predictive values, heterozygous monoallelic muta-
tions may not be accurately predicted.42

Likewise, abnormalities in signaling molecules such as FLT3
and RAS appear not to be readily predictable within diverse AML
cohorts.22 This may not be too surprising taking into account their
less direct role in transcriptional modulation. In some studies,
reasonably successful prediction of FLT3-ITD status was achieved
when cytogenetically normal AMLs were selectively analyzed.43,44

A recently reported classifier for FLT3-ITD mutation status in
normal karyotype AML showed only a modest performance in
predicting FLT3-ITD status in a validation cohort of 72 normal
karyotype cases, with both a relatively high number of false
positives and false negatives (sensitivity 73%, specificity 85%).45

Taken together, these observations suggest that, using current
methodology, definition of GEP-based classifiers is only feasible
for selected AML subtypes in which the underlying molecular
abnormality is not too distantly involved in transcriptional modula-
tion. Those abnormalities, involving t(8;21), inv(16), and t(15;17),
can be identified by rapid and widely used methods such as PCR as
well. This may raise the important question what the ultimate
clinical utility of GEP classifiers will be. The particular value of
GEP-based classification lies in its comprehensiveness (ie, the
opportunity to perform many tests simultaneously), for instance
using specifically designed diagnostic DNA microarrays. Evalua-
tion of larger representative AML patient series will be needed to
reveal whether it is possible to define additional classifiers for less
frequent cytogenetic or molecular subtypes. Definition of such
additional classifiers will enhance the attractiveness of GEP as a
diagnostic assay.

Is genome-wide gene expression analysis
useful for predicting prognosis?

Several attempts have been made to derive prognostic signatures
for AML. This approach is similar to class prediction, as discussed
in the previous section, but instead of subgroup status (eg, t(8;21)),
outcome (eg, overall survival) is used as the end point to define a
prognostic predictor.46,47

In one study, a set of 133 genes was demonstrated to predict
survival among adults with normal karyotype AML.21 A second
group of investigators converted this signature into a prognostic
predictor and confirmed its prognostic ability as regards overall and
disease-free survival in another series of normal karyotype AML.48

Because of differences in DNA microarray platforms, the investiga-
tors could only verify 81 of the original 133 genes, so that a
complete validation of the original signature was not possible.34 A
significant part of the prognostic effect was associated with
FLT3-ITD mutations.48

For relapse of pediatric AML, a 2-gene predictor has been
proposed.23 The predictive value of this indicator appeared to be
modest in a small validation subset of the pediatric cohort as well as

in a set of adult AML cases. The same investigators were not able to
confirm the value of a prognostic signature for pediatric AML that
had been proposed by a different group.49

While the above prognostic predictors were constructed without
any a priori biologic assumption, a hypothesis-driven approach was
used to construct a predictor consisting of 11 genes associated with
a stem cell–like expression pattern. Those genes were chosen
because of their relationship to BMI1 activation in a murine
prostate cancer model and in human cancer samples.50 The
predictor recognized adverse outcome in several types of human
cancer including AML, but its value awaits independent evaluation.

Will these studies lead to the introduction of GEP-based
prognostic tests for AML in clinical practice? Experience in the
field of breast cancer and diffuse large B-cell lymphoma may
exemplify the use of GEP-based prognostication.51-56 For breast
cancer, 2 prognostic predictors were reported recently by
independent groups.53,54 Initially these GEP-based predictors
met some skepticism because of their minimal overlap in genes.
Independent validation studies, however, subsequently con-
firmed prognostic value for both signatures, independent of
other available prognostic markers.52,57 The very limited overlap
in genes between the 2 predictors is most likely explained by the
fact that in a typical GEP experiment, many transcripts are more
or less similarly correlated to outcome. Consequently, several
combinations of genes are equally informative for prognosis.58

The success of the breast cancer predictors has led to the recent
approval by the Food and Drug Administration of a commercial
test that is based on one of them.56,59

From currently available evidence it appears that GEP
predictors for prognosis can probably be established for AML.
This will have the advantage of a comprehensive prognostic test
that can substitute several currently used prognostic markers.
However, it is still necessary to better assess whether such GEP
based predictors can add information over currently available
cytogenetic and molecular markers for prognosis of AML.46,60

Validation of any prognostic signature in sufficiently large series
will be necessary before accepting this as a solid and reliable
indicator of prognosis.46,58,61-65

What can genome-wide gene expression
analyses tell about the biology of AML?

An additional quality of genome-wide assessment of mRNA levels
of tens of thousands of genes is that it may allow for the discovery
of pathobiologic pathways. Unbiased genome-wide GEP in AML
may identify critical downstream targets of known oncogenes or
tumor suppressors or identify novel causative genetic abnormali-
ties. This concept has been illustrated to be particularly promising
in animal or cell line cancer models in which an oncogene of
interest had been introduced. Recent examples include models for
acute promyelocytic leukemia,66 mutant Cebpa67 and Mll-Af9.68

Indeed, these studies demonstrate that biologic information is
captured within the thousands of transcripts measured.

Although the search for critical abnormalities in clinical AML
sounds straightforward, in practice there may be nontrivial hurdles
on the way to the discovery of genomic abnormalities playing a key
role in the pathophysiology. There may be numerous differences in
gene expression between AML cases, but only few of them may be
truly disease pathogenesis-related. How to extract the biologically
important transcriptional differences from the large amount of
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data? One possible approach is the supervised class comparison
strategy, which typically involves 3 steps. First, a subgroup of
AML of interest is defined. Next, the gene expression profiles of
cases in this subgroup are compared with those of control cases,
yielding a list of differentially expressed genes. And finally, a
selection of several genes from that list is made for further study,
based on their presumed biologic impact. For example, in one
recent study, gene expression profiles from clinical acute promyelo-
cytic leukemia samples with the t(11;17) translocation expressing
both PLZF-RARA and the reciprocal fusion protein RARA-PLZF
were compared with those from samples expressing the PLZF-
RARA fusion only. This led to the identification of CRABP1 as a
specific target of the reciprocal fusion product. CRABP1 was
subsequently shown to play a functionally important role in
retinoid resistance.69 Comparisons of FLT3 ITD and FLT3 TKD
signatures to FLT3 wild-type signatures have led to the discovery
of potentially relevant downstream targets as well, although these
remain to be functionally validated.44

While these examples show the potential of this approach, the
disadvantage of supervised comparisons with subsequent selection
of candidate genes is restriction due to inherent selection bias. One
way around the selection bias problem may be employment of
pathway-oriented bioinformatic analyses. Using specialized soft-
ware, it has become possible to investigate the differential expres-
sion of sets of genes known to function in the same biologic
pathways or to identify genes that have frequently been linked in
the literature.39,40,70 These analyses facilitate the identification of
the most promising candidate genes and their selection for func-
tional validation in either in vitro or in vivo model systems. At the
same time, it should be kept in mind that relative levels of mRNA
expression do not necessarily reflect biologic activity, as the latter
may be highly dependent on other factors, such as posttranslational
modifications.

Nevertheless, a recent report on a novel subgroup of
immature leukemias with myeloid and T-lymphoid characteris-
tics demonstrated the value of the application of biologic
pathway analysis to clinical GEP data.31 In a clinical AML GEP
study, these leukemias were found to carry expression profiles
similar to AML cases with CEBPA mutations, but such muta-
tions were not present (Figure 1A). Subsequent experiments
elucidated the likely explanation for this phenomenon, as in the
novel subgroup CEBPA expression was silenced, frequently
through promoter hypermethylation. Pathway analysis then
revealed that the leukemias carried both myeloid and T-
lymphoid features. Mouse modeling subsequently demonstrated
that lack of CEBPA expression induced the expression of certain
T-cell genes in immature hematopoietic cells. Thus, the analysis
of human AML GEP using pathway analysis in combination
with experiments in a representative mouse model uncovered
part of the pathobiology of a subgroup of leukemia character-
ized by a myeloid/T-lymphoid phenotype, CEBPA silencing,
and, in fact, frequent NOTCH1 mutations.

Another strategy for distilling biologically significant genes
from human AML gene expression data makes use of possible
associations with large sets of genes involved in animal retroviral
insertion leukemogenesis. A study that compared integration sites
in retrovirally induced leukemias in mice with human AML
datasets demonstrated that mouse cancer genes were frequently
deregulated in the human AMLs.71 Moreover, pathway analysis
defined several biologic networks that associated with particular
AML subsets. Thus, comparisons of human AML GEP data with
high-throughput results from dedicated experimental models pro-

vide valuable opportunities to identify candidate disease genes. As
pointed out before, these experimental approaches could also
utilize GEP of cell lines or animal models,25-27 or, alternatively, use
techniques such as chromatin immunoprecipitation on DNAmicroar-
ray chips (ChIP-chip),72 ChIP-sequencing73 and RNA interference
libraries to uncover target genes. A successful example of the latter
approach comes from diffuse large B-cell lymphoma, for which
2 previously GEP-defined disease subgroups were functionally
investigated using an RNA interference library to search for
specific targets inhibiting tumor growth.26,74

Another viable strategy is based on the correlation of putative
disease genes from in vivo or in vitro models to specific human
leukemia subtypes. The strength of this approach is that the gene
choice is based on experimental data. This allows for a rapid
correlation of basic research findings to human AML datasets: is
transforming gene X, that induces a leukemic phenotype in an
experimental mouse model, differentially expressed in particular
forms of human AML? Using this approach, researchers have
provided evidence that genes such as TrkA and Trib2, which are
involved in murine leukemia, may also be engaged in t(8;21) AML
and CEBPA-silenced AML, respectively.75,76

These studies demonstrate the abilities of GEP to resolve
questions related to the biology of AML when combined with
appropriate other experimental and analytical tools. At the same
time, there are various other experimental options to pinpoint key
genomic abnormalities through GEP in human AML samples.

Concluding remarks and future perspectives

Recent years have shown an increase in high-throughput applica-
tions apart from GEP.8 In this respect profiling of microRNA
(miRNA) levels, chromosomal copy number changes, epigenetic
modifications, and DNA sequencing offer interesting opportunities.

MiRNAs are small noncoding RNAs that play a role in
transcriptional or posttranscriptional regulation of genes involved
in numerous biologic processes, including differentiation and
proliferation.77 Profiling of miRNA expression levels in AML
cohorts has indicated that, similar to mRNA profiling, distinct
miRNA signatures are associated with specific subgroups of
AML.78-80 As a single miRNA can play a role in concomitant
regulation of multiple genes, closer comparisons between miRNA
and mRNA profiles may provide clues for significant defects.

Changes in expression levels of critical genes may be due to
small DNA amplifications or deletions undetected by conventional
cytogenetics. Platforms to study those small chromosomal aberra-
tions include single nucleotide polymorphism (SNP) arrays and
array-based comparative genomic hybridization (CGH).81,82 The
power of the use of SNP arrays for this type of analysis was
recently illustrated in a study of 242 cases of pediatric ALL.83 The
investigators identified focal abnormalities in lymphocyte differen-
tiation related genes in 40% of cases, including 30% in the PAX5
gene. As yet, only studies of limited size have been performed in
AML.84-89 A study in which array CGH (bacterial artificial and
P1-derived artificial chromosome clones) was used in a series of 60
cases of AML with complex karyotypes identified several recurrent
lesions.90 It is not clear yet what the overall frequency and
distribution of these genomic alterations in AML are. A notable
observation from several SNP array–based studies is the relatively
common occurrence of copy number–neutral loss of heterozygosity
through segmental uniparental disomy.84,87,91 This phenomenon can

GENE EXPRESSION PROFILING IN AML 295BLOOD, 8 JANUARY 2009 � VOLUME 113, NUMBER 2

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/113/2/291/1456526/zh800209000291.pdf by guest on 02 June 2024



lead to homozygous mutations or deletions of leukemia-related
genes, including FLT3, WT1, RUNX1, and CEBPA.91,92

Variations in gene expression may also be caused by yet
unknown gene sequence mutations. Whole genome sequencing is
emerging as a means to address this issue on a global scale.93,94 A
challenge in this regard will be to distinguish functionally relevant
mutations from the abundant so-called passenger mutations—
unimportant genetic changes caused by genomic instability of
cancer cells—that will be picked up at the same time. Studies on
tyrosine kinase abnormalities have underscored the need for
validation of the biologic effects of novel mutations identified by
high-throughput nucleotide sequencing.95,96

In addition to genetic alterations, epigenetic modifications,
including DNA and histone methylation, play a pivotal role in gene
regulation. Several platforms have been developed to study alter-
ations in these mechanisms on a genome-wide scale.97,98 The first
results of genome-wide CpG methylation profiling of AML cell
lines and primary cells have now been reported, and it is likely that
more extensive investigations will follow.99,100 Given the direct
association between epigenetics and expression, much is to be
expected from this field.

As these fields have just started to emerge, there is still a need
for bioinformatics to keep up with the technical developments, and
to develop software platforms that allow the integration of the
massive amounts of data. It is likely that the combination of GEP

with complementing technologies, such as those outlined above,
will provide challenging opportunities to address questions that
cannot be resolved by GEP alone.
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