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Hematopoiesis is a carefully controlled pro-
cess that is regulated by complex networks
of transcription factors that are, in part,
controlled by signals resulting from ligand
binding to cell-surface receptors. To further
understand hematopoiesis, we have com-
pared gene expression profiles of human
erythroblasts, megakaryocytes, B cells, cy-
totoxic and helper T cells, natural killer cells,
granulocytes, and monocytes using whole
genome microarrays. A bioinformatics anal-

ysis of these data was performed focusing
on transcription factors, immunoglobulin su-
perfamily members, and lineage-specific
transcripts. We observed that the numbers
of lineage-specific genes varies by 2 orders
of magnitude, ranging from 5 for cytotoxic
T cells to 878 for granulocytes. In addition,
we have identified novel coexpression pat-
terns for key transcription factors involved
in hematopoiesis (eg, GATA3-GFI1 and
GATA2-KLF1). This study represents the

most comprehensive analysis of gene ex-
pression in hematopoietic cells to date and
has identified genes that play key roles in
lineage commitment and cell function. The
data, which are freely accessible, will be
invaluable for future studies on hematopoi-
esis and the role of specific genes and will
also aid the understanding of the recent
genome-wide association studies. (Blood.
2009;113:e1-e9)

Introduction

The hematopoietic system represents one of the best-studied
cellular differentiation processes in mammals. The differentiation
of the hematopoietic stem cell (HSC) into the blood cell lineages,
which is depicted as a stepwise process, generates diverse types of
cells that perform many different functions. Historical observations
of the blood, made in the late 18th century using some of the first
microscopes, revealed that blood is composed of a heterogeneous
population of cells that are distinct in number, morphology, and
function. Since these early studies, the application of both techno-
logic and methodologic advances to the investigation of blood has
led to an ever-increasing understanding of the nature and function
of the different types of blood cells. For example, the use of
monoclonal antibodies (mAbs) and the designation of the cluster of
differentiation (CD) markers, of which there are now more than
300,! allows hematologists to assign detailed phenotypes to
malignant blood cells, which form the basis of decisions on
therapeutic intervention.

The value of the current understanding of the hematopoietic
system to patient care is perhaps best illustrated in the field of
malignancy where gene and protein expression profiles permit

rapid and routine patient stratification. It is now possible to stratify
patients with leukemia and lymphoma with unprecedented accu-
racy using gene expression profiles. Signature gene expression
profiles may be used for diagnosis and predicting disease progno-
sis. In addition to studies in patients, gene expression profiles are
available for a wide range of healthy tissue types. However, many
of these resources, although broad in tissue coverage, are limited in
the number of samples analyzed for each tissue type (eg, Symat-
las).2 Consequently, the false-positive and false-negative discovery
rates are high, and limited reliable information is available
regarding variation in gene expression profiles between healthy
persons. Similarly, platform differences between studies do not
facilitate rapid comparison between datasets.

We set out to generate a focused gene expression atlas for cells
of the hematopoietic system from healthy persons, a so-called
Hematology Expression Atlas (HaemAtlas). We have taken advan-
tage of recent advances in cell purification, RNA amplification, and
microarray technologies that allow the study of gene expression of
purified subsets of cells on a genome-wide scale. Using whole-
genome expression arrays, we have compared the gene expression
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profiles of the precursors of erythrocytes and platelets (erythro-
blasts [EBs], megakaryocytes [MKs]) and of B cells, cytotoxic
T cells (Tc), helper T cells (Th), natural killer (NK) cells, granulo-
cytes, and monocytes. In total, 50 expression profiles were obtained
using the Illumina HumanWG-6 version 2 Expression BeadChip
(Illumina, San Diego, CA), which have more than 48 000 probes,
targeting genes and known alternative splice variants from the
RefSeq database release 17 and UniGene build 188.

The data described represent an extremely useful resource for
the clinical hemato-oncologist and for the research community as a
whole. In addition, we demonstrated the utility of this dataset by
performing a focused bioinformatic analysis of transcription factor
and immunoglobulin superfamily (IgSF) member gene expression.
The dataset has already been used in conjunction with genome-
wide association studies and in the characterization of tetraspan-
ins.>* Finally, by comparing expression profiles between cell types,
we have identified sets of transcripts that are lineage specific and
show, in an accompanying manuscript, the expression and function
of 4 novel proteins in arterial thrombus formation.’

Methods

Cell purification and purity assessment

Whole blood units (~ 450 mL) from 7 healthy volunteer donors of the
Cambridge BioResource at National Health Service (NHS) Blood and
Transplant were obtained with informed consent in accordance with the
Declaration of Helsinki. The study was approved by the United Kingdom
National Health Service Blood and Transplant. Donors were included only
if they had a hemoglobin more than 12.5 g/dL for women and13.5 g/dL for
men, were negative for HepB, HepC, HIV1, and HIV2 antibodies, negative
for syphilis, and negative for hepatitis C virus (HCV) by nucleic acid
testing. Donor Epstein-Barr virus and cytomegalovirus status were not
selection criteria. Blood was taken by venipuncture into a bag containing
acid citrate dextrose anticoagulant according to the NHS Blood and
Transplant procedures. CD4* Th and CD8* Tc lymphocytes, CD14*
monocytes, CD19% B lymphocytes, CD56% NK cells, and CD66b* granu-
locytes were isolated using an automated magnetic labeling protocol
(RoboSep; StemCell Technologies, Vancouver, BC) as described in “Supple-
mentary Materials and Methods” in Document S1 (available on the Blood
website; see the Supplemental Materials link at the top of the online article).
Details of the CD markers used for cell isolation together with quality
control data for the processed samples are given in Tables S1 and S2. The
culture conditions of the 4 cord blood hematopoietic progenitor cell (HPC)
preparations and the purification protocol of the MKs and EBs have been
described previously.®

RNA purification, amplification, and hybridization

Purified cell populations were lysed in Trizol following the manufacturer’s
instructions (Invitrogen, Paisley, United Kingdom) using 1 mL Trizol
reagent per 10° cells. Isolated total RNA was then purified further using the
RNeasy MinElute Cleanup Kit (QIAGEN, Dorking, United Kingdom).
Each purified RNA sample was assessed for quality and integrity using the
2100 Bioanalzyer (Agilent Technologies, Palo Alto, CA). All information
on RNA processing and quality assessment is available in Table S1.

Total RNA (500 ng) was amplified using the Illumina Total Prep RNA
Amplification Kit (Ambion, Austin, TX) according to the manufacturer’s
instructions. The biotinylated cRNA (1500 ng per sample) was applied to
Ilumina HumanWG-6 v2 Expression BeadChips and hybridized overnight
at 58°C. Chips were washed, detected, and scanned according to the
manufacturer’s instructions.

Statistical analysis of gene expression data

Present genes. The Illumina BeadStudio software calculates a Detection
Score equivalent to 1 — P value for detection for each probe, which is an
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estimate of the confidence limit of detection relative to the local back-
ground. Probes were considered as present if they had a detection score
more than 0.99 in all samples of a given cell type.

Differentially expressed genes. We performed pairwise comparisons
between one cell type and every other cell type used in the study. These
comparisons are exhaustive but necessary to identify transcripts that are
unique to each of the cell types or common between different cell types. In
comparing the expressions between cell types, we performed a paired ¢ test
(or 2-sample ¢ test in the case of nonpaired samples) coupled with
multidimensional false-discovery control (FDR2D).” FDR2D was used to
guard against false-positive results from transcripts whose variance is
underestimated by chance, whereas their fold changes are small. Analysis of
the results obtained suggests that the method is effective in identifying true
differentially expressed (DE) transcripts.

Cell unique and unspecific genes. To identify transcripts that are
specifically enriched or depleted in a given blood cell lineage, so-called “unique”
and “unspecific” genes, respectively, we performed a comparison between the
lists of DE genes using an “AND” operator. In such a way, genes that were
consistently up- or down-regulated vs all other cell types were identified.

Bioinformatic analysis

Biologic processes. The Protein Analysis Through Evolutionary Relation-
ships (PANTHER) classification scheme (http://www.pantherdb.org/) was
used to infer involvement in biologic process for the present genes as
described in “Supplementary Materials and Methods” in Document S1.

IgSF proteins. The identification of the IgSF repertoire expressed by
blood cells was based on matching microarray probes to 2 existing
reference sets: (1) our manually curated human IgSF reference set defined
previously®; and (2) the subset of Homo sapiens Ensembl v46,° gene
predictions that received significant hits by either PFAM!? or SUPERFAM-
ILY," hidden Markov models that represent IgSF domain sequences.

The functional presence of an IgSF gene was established using
conservative signal threshold cutoff values. Furthermore, the analysis of
IgSF expression was primarily focused on the identification of those cell
types in which the presence of a transcript was particularly marked. This
was achieved by comparing relative signal intensity values for the same
probe across the cell types and, using the ratio of the mean intensity to the
SD, indicative skews in the distribution were identified when such an index
was less than 1.

Transcription factor networks. We generated a dataset of transcription
factors by combining (1) a manually curated list of known transcription
factors and (2) sequence-specific DNA-binding transcription factors using
the most recent version of our transcription factor prediction database
(http://transcriptionfactor.org/).!2

The combined transcription factor set contains 2528 transcripts, all of
which are present on the Illumina HumanWG-6 version 2 Expression
BeadChips.

Evolutionary conservation of gene expression profiles. To identify
evolutionary conservation of gene expression profiles in blood cells, we
compared the human hematopoietic expression data generated in this study
with that in mice obtained by Chambers et al.'? The murine study included
hematopoietic stem cells, activated Tc and Th cells, in addition to the cell
types analyzed here, but did not include MKs. A comparative analysis of the
expression profiles for the cell types common to both studies was
conducted. Notwithstanding that the tissue and membrane antigens used for
cell isolation differed between the 2 studies, greater than 98% of all
human-mouse orthologous transcripts were represented in both datasets.

The data described in this manuscript are available at ArrayExpress
(www.ebi.ac.uk/microarray-as/ae/) under accession number E-TABM-633
or at the Bloodomics project website (www.bloodomics.org).

Results
Sample processing

In total, we purified peripheral blood cells from 43 volunteers from
which 7 sets that met strict quality control criteria were selected for
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Figure 1. Cells were purified to more than 95% purity as assessed by morphology and flow cytometry. After cell isolation, an aliquot of purified cells was removed and assessed for
purity as described. Example of CD19* B cells isolated from peripheral blood mononuclear cells. (A) Peripheral blood mononuclear cells assessed by Romanovsky-stained cytocentrifuge
preparations and (B) phycoerythrin-labeled anti-CD19 by flow cytometry. After purification, more than 98% of cells were CD19" as assessed by (C) a 1000 differential cell count of
Romanovsky-stained cytocentrifuge preparations and (D) flow cytometry. Images and purity levels are representative of all samples processed. (A,C) Romanovsky-stained
samples were visualized using an Olympus BX51 microscope (Olympus, Tokyo, Japan) with a 100x/1.30 oil objective and immersion oil (nd 1.516; Olympus). Images were
captured using a Pixera Pro600ES and Penguin/Pro Application Suite version 3.0.1 (Pixera, Los Gatos, CA).

this study (Tables S1, S2). For each cell population, purity was more
than 95% as assessed by flow cytometry together with a morphologic
assessment of May-Grunwald-Giemsa (Romanovsky)—stained cyto-
centrifuge preparations using light microscopy (Figure 1). After
cell isolation, RNA was purified and quality assessed using an
Agilent BioAnalyzer before amplification. A total of 50 samples
were amplified and hybridized onto the Illumina Human WG-6
version 2 Expression BeadChips as described. This represents
6 cell types isolated from peripheral blood from the 7 volunteer
donors (n = 42) and MKs and EBs differentiated from CD34%
HPCs obtained from 4 umbilical cord blood samples (n = 8).°

Genes expressed in differentiated blood cells

For each cell type, we first determined the number of present probes by
applying rigorous criteria to reduce false-positive discoveries (Figure 2;
Table S3). As can be seen, the number of present probes ranged from
7302 for granulocytes to 10 314 for MKs. The lower number of present
transcripts in granulocytes could not be attributed to any features of the
microarrays (data not shown).

Hierarchical cluster analysis of all samples based on the probes
with the highest variance across the 50 samples recapitulated the
known hematopoietic differentiation pathway, with the exception
that the NK-cell samples were more closely related to the Tc

samples (Figure 2B) than Th. On the basis of this clustering, we
defined genes that were common to (1) the 2 precursor cells,
(2) granulocytes and monocytes, and (3) Tc, Th, and NK lymphoid
cells and performed an overlap analysis with those present in
B cells (Figure 2C). A total of 5396 genes were detected in all blood
cells, with transcripts from an additional 1860 genes being present
in all cells except for monocytes and granulocytes (Figure 2C). As
expected, more than 1000 more transcripts were detected in the
transcriptomes of the 2 precursor cells (MKs and EBs), with Gene
Ontology (GO) analysis indicating enrichment for genes involved
in cell cycle (GO, 0007049), mitotic cell cycle (GO, 0000278), and
cell-cycle process (GO, 0022402). This observation is in agreement
with the active cell proliferation and differentiation processes that
are underway in these 2 elements that normally reside in the bone
marrow environment.

Using PANTHER classification, we observed that genes in “nucleo-
side, nucleotide and nucleic acid metabolism,” “immunity and defense,”
and “protein metabolism and modification” are overrepresented in
hematopoietic cells but that categories such as “signal transduction” and
“developmental process” are underrepresented (Figure 2D). The enrich-
ment for genes involved in “immunity and defense” is consistent with
our understanding that immune responses are one of the primary
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Figure 2. Characterization of blood cell transcriptomes and identification of differentially expressed transcripts. (A) Numbers of genes detected as present in different
blood cells. (B) Clustering of samples based on genes with high precision in the dataset. (C) Overlap of present genes in human blood cells. (D) Patterns of enrichment (red) or
depletion (blue) for different biologic processes of the PANTHER classification for the genes differentially expressed in different blood cell types. The color range represents
Z-scores (from Z = 3to Z = 10 for enrichmentand Z = — 3to Z = — 10 for depletion). Functional categories containing at least 20 genes were used in this analysis.

functions of the myeloid and lymphoid blood cell types. In addition,
genes classified as being involved in “‘signal transduction” are underrep-
resented in all cell types studied.

Expression of CD markers

The CD markers constitute the most widely studied hematopoietic
markers, with known protein expression patterns confirmed by antibody
staining of normal and malignant hematopoietic cellular elements. Of
the 339 currently described CD markers, 44 are not represented on the
[lumina HumanWG-6 v2 Expression BeadChips (data not shown). We
clustered the samples on the basis of CD marker gene expression. The
samples cluster largely as expected, with a clear distinction between
cells of the myeloid and lymphoid lineages (Figure 3). Interestingly,
again, the CD56" NK cells cluster most closely to the CD8" Tc cells,
confirming the results of the hierarchical clustering based on transcripts
with a high variance (Figure 2), and compatible with the notion that
these 2 cells are more closely related than the CD4* and CD8™ T cells at
the transcript level. Similarly, the CD66b™ granulocytes and CD14+
monocytes cluster together as do the MK and EB samples (Figure 3).

Combinatorial patterns of transcription factor expression

Transcriptional regulation is a key mechanism controlling fate
commitment of HPCs and their progeny and ultimately in control-
ling intermediate phenotypes, such as volumes and numbers of the
mature blood cell elements.'%!> Both gain- and loss-of-function
studies have been used to demonstrate the role of transcription
factors in controlling the specification and differentiation of HSCs
(eg, SCL/TALIL, GATA2, c-MYB, PU.1, RUNXI, ETV6, GFI1).

However, much remains to be learned about the way these key
regulators interact with each other and thus form the transcriptional
networks that specify the various mature lineages. We therefore
explored the potential utility of our gene expression profiles to gain
new insights into hematopoietic transcriptional control mechanisms.

We initially catalogued sequence-specific, DNA-binding
transcription factors expressed in all cell types using the most
recent version of our transcription factor prediction database
DBD (http://transcriptionfactor.org/).'? The expression profiles
of known key hematopoietic transcription factors and their
related family members are shown in Figure S1. An immediate
conclusion from this analysis was that key hematopoietic
transcription factors are expressed in multiple hematopoietic
lineages, consistent with the notion that hematopoietic lineages
are generally not specified by single transcription factors.
Instead, specific combinatorial interactions between key tran-
scription factors are vital to control cellular identity.

To explore the combinatorial theme further, we next identified
those transcription factors that share their expression profiles with
6 well-characterized transcription factors with distinct roles in the
development of the 8 blood lineages profiled in this study. This
approach was based on the rationale that coexpression of transcrip-
tion factor pairs might reveal new regulatory links as it would be
consistent with either direct regulation (transcription factors up-
stream or downstream of each other) or placement within the same
regulatory pathways. Our analysis demonstrated that the numbers
of coexpressed transcription factors (TFs) varied greatly for the
6 TFs chosen, ranging from one for GATAI to 35 for GATA2
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Figure 3. Clustering of samples on the basis of CD marker expression
recapitulates cell ontogeny. Samples were clustered using the mean normalized
intensity values for the 356 probes that map to CD markers.

(Figure 4). Coexpression in several cases was consistent with
known interactions (GATA2-Tall'® or GATA1-GFI1B!7) and also
suggested as yet unreported interactions between known key
regulators (GATA3-GFI1; GATA2-KLF1). Moreover, many puta-
tive links with totally uncharacterized transcription factors were
revealed, such as the various zinc finger families (Figure 4). Taken
together, therefore, our analysis suggested that comprehensive
genome-wide expression surveys provide an important resource to
reveal new links in hematopoietic regulatory networks, particularly
with respect to the combinatorial control of gene expression.

IgSF member expression in hematologic cells

The IgSF represents a family of proteins that play key roles in
hematopoiesis and blood cell function. Analysis of the HaemAtlas

HaemAtlas: GENE EXPRESSION INBLOOD CELLS  e5

expression data shows that 170 (~ 30%) of the approximately 600
known IgSF genes show significant expression across the 8 blood
cell types investigated (Figure 5). The highest cumulative expres-
sion (and largest unique protein repertoire) of IgSF molecules was
found in the granulocyte, whereas the erythroblast showed the
lowest level of IgSF deployment. This detailed analysis of the
expression of IgSF members in blood cells has identified several
novel findings relating to their various functions.

IgSF members involved in boundary interactions

Several IgSF family members are involved in interactions at cell
boundaries, and we investigated the expression of these in the
HaemAtlas data. Blood cell-surface IgSF protein interaction with
the vascular wall and epithelia is primarily mediated and modu-
lated via molecules, such as PECAM-1, MCAM, CD47, SIRPa,
and the families of the intercellular adhesion and junctional
adhesion molecules, ICAM and JAM, respectively. PECAM-1,!8
MCAM, " and JAM molecules?’ are crucial for interaction with the
endothelium, binding both homotypically and to other non-IgSF
ligands. PECAM-1 is known to interact with the non-IgSF
CD177,2" which is considered to be granulocyte-specific. In our
data, CD177 showed very low expression levels across the 8 cell
types, whereas PECAM] transcription was found at increasing
levels in megakaryocytes, monocytes, and granulocytes. PE-
CAM-1 is also known to play a collaborative role with JAM-A in
the transmigration of granulocytes,?> and JAMA expression was
predominant in the granulocyte. JAM-C, on the other hand, was
well represented in all lymphoid cells as well as the megakaryo-
cyte. JAML, which binds the Coxsackie adenovirus receptor
(CxADR) during blood cell migration across the mucosal barrier,?
was among the most highly expressed cell adhesion molecules in
monocytes and granulocytes. MCAM (typically up-regulated in
activated T cells), VCAM1, and MADCAM 1, which are known to
be specifically expressed in endothelial cells,?*> were not detected.

The ICAMs are known for their deployment on luminal
endothelial and apical epithelial surfaces and for their interac-
tion with leukocytic integrins. However, signaling from ICAMs
is also known to play a role in blood cell development.?6-28 In the

Figure 4. Transcription factor coexpression in hema-
topoietic lineages. Shown at the top is the hematopoi-
etic differentiation hierarchy with key hematopoietic tran-
scription factors GATA1, GATA2, Meis1, SPI1, GATAS,
and EBF1. Only MEIS1 and EBF1 were expressed in a
single lineage, whereas all other factors were expressed
in 2 or more lineages. Tabulated underneath each factor
are those transcription factors that share their respective
expression pattern, suggesting either direct regulation or
common upstream regulators. Expression of GATA1 in
CD66b™* cells was an order of magnitude lower than in
erythroblasts and megakaryocytes.
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Figure 5. The IgSF protein expression profiles in the HaemAtlas. The expression
patterns of cell-specific IgSF family members (columns) together with those ex-
pressed across several cell types (rows) are depicted, with yellow boxes indicating
cells in which genes are expressed. For example, CD8* T cells are the only cell type
to express CD8B, whereas FcRLB and LAIR1 are expressed in NK and B cells. The
size of the font and the green-to-red color intensity are both indicative of the strength
of mean expression across the cells.

current study, /CAM4 was exclusively expressed in megakaryo-
cytes and erythroblasts, ICAM3 was present in all differentiated
blood cells (somewhat prominently in the granulocyte), and
ICAM?2 had a moderate signal intensity level in all cell types
except for granulocytes. Transcription levels were low for
ICAMs-1 and -5 in all cells tested.

Interestingly, we observed a notable overlap between the blood
cell IgSF cell surface sensors and those associated with neural
development. Moderate intensity levels of NCAM-1 and low levels
of LINGO2 were exclusive to the NK cell, whereas CD4" and
CD8" T cells showed considerable specificity for LRRN3 and
LRIGI, whereas granulocytes and B cells both had moderate
expression of ALCAM (also known as neurolin).? It is of interest
that ALCAM has been reported to bind to EGFR,*® whereas
LRIG-1 is known to inhibit the signaling of this growth factor
receptor.?32 Modest expression levels of LRFN4 and LRRN2 were
observed but only in EBs. Low levels of LRIG2 transcription were
observed in all 8 cell types, and the expression of schizophrenia-
associated MPZL1 was restricted to granulocytes.

Finally, we observed that versican, an abundant IgSF proteogly-
can in vessel walls whose expression is increased after vascular
injury, is abundantly and specifically expressed in monocytes.
Versican is known to accumulate in advanced atherosclerotic
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plaques® and after myocardial infarction.’* These observations
raise the possibility that monocyte-derived versican may play a key
role in atherosclerotic plaque formation.

SLAM

The signaling lymphocytic activation molecule (SLAM) family is
known to modulate the function of immune system cells through
homotypic interactions and signaling through SLAM-associated
protein-related adaptor molecules.?>3¢ In this experiment, SLAMs
Fl1, F6, F7, and Ly9 were moderately expressed in differentiated
lymphoid cells, with SLAM F7 not detectable in B cells and CD4*
T cells. SLAM CD84 was found in T cells and more strongly in
megakaryocytes. CD244 was found in NK cells and was weakly
expressed in monocytes and CD8" T cells. SLAMs F8 and F9
showed a very low signal in all cell types. CD48 transcription was
high in all differentiated blood cells, whereas the CD2-related
CD58 was moderately expressed in all 8 cell categories. CD2 itself
was restricted to NK and T cells.

Comparative analysis of gene expression in human and murine
blood cells

Recently, a study of blood cell gene expression in mice has been
performed (http://franklin.imgen.bcm.tmc.edu/loligag/)!® and to
investigate whether the gene expression patterns in hematopoietic
cells remain evolutionarily conserved, we compared the expression
pattern of human transcripts with that of corresponding mouse
orthologs. A comparative analysis of the expression profiles for the
7 cell types common to both studies was performed (Figure 6).

The number of transcripts expressed in different hematopoietic
cells in human had a range of approximately 6000 to approximately
8000, whereas the corresponding number for mouse had a range of
approximately 12 000 to approximately 13 500. The apparent
consistent increase in the number of transcripts in mouse over
human most probably reflects the difference in platforms and
expression cutoffs chosen in the 2 studies. However, despite these
differences, the overall patterns of gene expression were fairly
consistent between the 2 species with approximately 50% of the
transcripts expressed in human having orthologs in mouse and vice
versa (Figure 6). For all cell types tested, the overlaps were found
to be statistically significant (P < 1079).

The number of transcription factors found in equivalent cell
types between human and mouse were also comparable. We
detected between 360 and 500 transcription factors in each human
cell type, of which approximately 50% (~ 230) had orthologs in
mouse, with 25% (~ 120) being shared between species in
equivalent cell types (Figure 6). This overlap of transcription factor
expression was found to be significant for all cells (P < .005)
except for the erythroblast samples (P = .07).

Identification of differentially expressed genes

A statistical analysis was performed to identify transcripts that are
differentially expressed between each cell type as described. For
this analysis, we considered a transcript to be differentially
expressed if it had a P value less than .05 and a fold change more
than 2. The outcome of this analysis for MKs is shown in Figure 7.
An average of 2206 features were up-regulated (range, 1091-3763)
and 1986 down-regulated (range, 750-3058) between MKs and
each other cell type. As expected when the MK was used as a
reference, the smallest number of DE features was observed in the
comparison with EBs. Interestingly, we observed that the CD66b*
granulocytes had the greatest number of DE features in each
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Figure 6. Evolutionary conservation of human versus
mouse gene expression in various hematopoietic cell
types. (A) Schematic representation of overlap in differen-
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tial gene expression between human and mouse. The
percentage of maximum possible overlap, shown in
parentheses, is the percentage of orthologous proteins of
the lower number (human or mouse) of DE genes. For the
7 cell types with data in both human and mouse, the
extent of conservation of differential gene expression is

MK
Megakaryoc !!;'

shown at the level of (B) all transcripts and (C) transcrip- A Evolutionary
tion factors only. For those genes that were detected as | conservation of gene
expressed in human blood cells, mouse orthologs were | eXPression
identified as described. The presence of these orthologs
in the mouse data was then investigated. Venn diagrams # icalpls suvisnd

. . . n human (# expressed
showing the number of overlapping genes with the transcripts with ortholog

present In mouse)

number of orthologs identified shown in parentheses.

# transcnpts.

B Transcript level overlap

12254(6279)

80B1(4317)  6050(3246)  7738(4155) B167(4318)  80B0(4277) BO41(4261) 7746(4116)

.(63%) '(75%) .ges%} .(71%)'(71%) .(74%).74%)

13002(6634) 12314(6255) 13426(6852) 13404(6872) 13611(7025) 13537(6947)

expressed n
both human and
mouse
{percentage of
Imaiemum possible

overlap)
/

# transcripls expressed

n mouse (# expressed

transcripts with ortholog
present In human)

C Transcription factor level overlap
360(185)

481(235)

385(210)

429(216) 491(236)

477(230)

499(239) 476(227)

430(234) 426(233) 493(260)

476(252)

479(255)  497(262)

comparison, reflecting the significant differences between the
myeloid cells and the other cells tested. The complete lists of DE
features are given in Table S4.

Cell-specific transcripts

We also performed an overlap analysis of the lists of DE transcripts
to identify those that are consistently up-regulated in one cell type
compared with all others (Table S5). The lists of genes thus
generated are considered “unique” for each cell type analyzed. We
observed that the number of transcripts uniquely expressed in a
given cell type varies by more than 2 orders of magnitude, with
CD8* cells expressing only 5 unique transcripts and CD66b™ cells
expressing 878. Similarly, the CD66b* cells have the highest
number of unspecific transcripts, whereas CD8" cells express the
least (data not shown).

The CD8" T cell-specific genes included both CDSA and
CD8B, although low-level expression of CDSA was also observed
in the NK-cell population, but this was in the absence of CD8B.
The other CD8* T cell-specific transcripts were CD248, DKK3
(dickkopf homolog 3), and the T-cell receptor alpha V gene

LYMPHOID
QIioT3AN

Figure 7. Identification of differentially expressed genes in MKs. For each cell
type, we identified transcripts that were up- or down-regulated versus all other cell
types as described. The outcome for MKs is shown.

segment TRAV1-2. CD248, also known as endosialin, has previ-
ously been reported as a fibroblast and pericyte marker where it
plays a role in tissue remodelling and repair.’’ The function of
DKK3, which is divergent from the 3 other dickkopf family
members (DKK1, 2, and 4), is unknown, although a role as a tumor
suppressor has been suggested because it is down-regulated in
several tumor cells.?® Interestingly, Dkk3 knockout mice, which do
not show enhanced tumorigenesis, have several unique hemato-
logic features compared with wild-type mice, including the fre-
quency of NK cells and IgM levels.*® More recently, a role for
DKK3 in TGF-B signaling has been identified*’; however, its role
as a secreted molecule in cytotoxic T-cell function remains to be
elucidated.

We hypothesized that the identification of cell-specific transcripts
would lead to the discovery of novel genes that play important roles in
cellular functions. We tested this hypothesis for 2 of the cell types used
in this study, CD8* T cells and MKs. CD248 (endosialin) was identified
as a CD8" T cell-specific transcript in this study; however, it is not
expressed in mouse T cells, and studies in knockout mice show no role
for CD248 in T cells. Using 4 CD248-specific monoclonal antibodies,
we were able to demonstrate the surface expression of CD248 on CD8™*
CD45RA™ T cells (Figure 8), confirming the lineage specificity of this
protein. The reason for the differential expression of CD248 between
human and mouse T cells is unknown but warrants further investigation.

For MKs, we selected 4 MK-specific transcripts for study in a
zebrafish thrombosis model. Knockdown of all 4 genes, which are
uniquely expressed in MKs, significantly affected thrombus forma-
tion in the caudal artery after laser-induced vessel injury. Using this
model, combined with the selection of MK-specific genes identi-
fied using the HaemAtlas, we have demonstrated a role for BAMBI
and LRRC32 in promotion and DCBLD?2 and ESAM in inhibition of
thrombus formation.’

Discussion

In this study, we have generated a gene expression atlas for 8 cells
of the hematopoietic system in what represents the most comprehen-
sive study of gene expression in blood cells from normal healthy
persons published to date. We envisage that the future use of the
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Figure 8. CD248 expression is restricted to CD8*CD45RA* T cells. Flow
cytometry with 4 different CD248 antibodies on lymphocytes from (A) peripheral
blood and (B) tonsil. Lymphocytes were first gated on forward scatter and side scatter
and then on the specific markers shown (CD3, CD4, CD8, CD45R0O, CD45RA). All
4 CD248-specific monoclonal antibodies (B1 35.1, B1 473, 18 37.30, and B1 22.4)
show that CD248 expression is restricted to CD8"CD45RA™ T cells. Nonfilled
histograms represent anti-CD248; and gray-filled histograms, negative control.

HaemAtlas will primarily be that of a reference resource for gene
expression in blood cells.

We developed standardized protocols and stringent quality-
control measures for cell isolation before microarray analysis to
ensure the quality of this gene expression atlas. All cell types
used in this study were more than 95% pure based on flow
cytometry analysis and inspection by microscopy. The granulo-
cyte population consists of 3 cell types (neutrophils, eosino-
phils, and basophils), all of which express CD66b and would
therefore be copurified. Interestingly, we did observe variation
in the levels of eosinophils in the granulocyte preparations from
15% to 30%. The effect of this variation on the transcriptome
data is unknown, but it is probably most apparent in the
determination of lineage-specific transcripts. Such an effect was
observed for the single CD56% NK sample with platelet
contamination, as this NK sample showed the presence of
transcripts deemed MK-specific (data not shown). This observa-
tion highlights the importance of maintaining a high level of cell
purity when identifying lineage-specific genes. However, the
presence of a single, platelet-contaminated sample had minimal
effect because of the number of replicates used and the high
purity of the other samples.

Our analysis of this comprehensive dataset was focused on
transcription factors and IgSF members as these proteins play key
roles in both blood cell differentiation and function. An analysis of
the coexpression of all TFs with 6 well-characterized TFs that have
distinct roles in blood cell development confirmed known interac-
tions and identified as yet unreported ones between known key
regulators of transcription. This analysis highlights the utility of
genome-wide expression in revealing new links in hematopoietic
regulatory networks. Similarly, the IgSF analysis confirmed known
expression patterns and identified several previously unreported
ones in hematopoietic cells. Of particular interest is the expression
of many transcripts involved in neural development. Furthermore,
we were able to identify genes that are unique to each cell type
studied. These lists of unique genes include the classic lineage-
specific CD transcripts and novel lineage-specific transcripts
recently identified by both others and us (eg, G6B, G6F, LRRC32,
and SUCNRI in MKs®) and also identify novel lineage-specific
transcripts for further study. Having an established catalog of
lineage-specific transcripts is important for several reasons. First, it
provides reassurance of the accuracy of the data presented in this
manuscript. A close inspection of the lineage-specific transcripts
encoding transmembrane proteins in EBs and MKs identified the
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presence of lineage-specific CD transcripts, confirming the excel-
lent sensitivity of the array platform. Second, proteins encoded by
lineage-specific transcripts are ideal drug targets allowing for
pharmacologic manipulation of cell function in a cell-specific
manner. Third, sequence variation of transcripts for transmembrane
proteins, which alter the amino acid sequence of cell-specific
membrane proteins, may be alloantigens, such as the human
platelet antigens.*! It is probable that, by an approach of inverted
immunology, novel clinically relevant alloantigens may be uncov-
ered. Finally, lineage-specific transcripts may play a key role in cell
function, as highlighted by the fact that all the novel MK-specific
transcripts that we have tested in a zebrafish thrombosis model
have a clear role in thrombus formation.’

Unlike previous studies performed with pooled cells isolated
from inbred strains of mice, we performed each hybridization with
RNA obtained from a single person. In addition, samples in this
study were isolated from unrelated donors; hence, it is possible to
ascertain the extent of biologic variation in gene expression. A
parallel study, in which gene expression profiles of monocytes from
40 persons were compared, has identified those monocyte genes
with the greatest variation in expression (data not shown). Such
studies, combined with genome-wide genotyping, will allow the
identification of cis- and frans-regulatory genetic variants that
control gene expression in primary cells, as has recently been
determined for immortalized lymphoblastoid B-cell lines.*>+3

The analysis of the HaemAtlas data reported here is based on
statistical comparisons performed on a cell-by-cell basis. It is possible to
analyze the data by making use of the known hematopoietic hierarchy
such that opposite “arms” in the hematopoietic lineage tree would be
combined. This strategy would potentially allow the identification of DE
genes in in silico—generated precursor cells that are not readily acces-
sible for analysis.

In conclusion, the HaemAtlas that we have generated serves not only
as a reference library for gene expression in human blood cells but also
as a resource for identifying key genes with roles in blood cell function.
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