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In paroxysmal nocturnal hemoglobinuria
(PNH) hemolytic anemia is due mainly to
deficiency of the complement regulator
CD59 on the surface of red blood cells
(RBCs). Eculizumab, an antibody that tar-
gets complement fraction 5 (C5), has
proven highly effective in abolishing
complement-mediated intravascular he-
molysis in PNH; however, the hemato-
logic benefit varies considerably among
patients. In the aim to understand the
basis for this variable response, we have

investigated by flow cytometry the bind-
ing of complement fraction 3 (C3) on
RBCs from PNH patients before and dur-
ing eculizumab treatment. There was no
evidence of C3 on RBCs of untreated PNH
patients; by contrast, in all patients on
eculizumab (n � 41) a substantial frac-
tion of RBCs had C3 bound on their
surface, and this was entirely restricted
to RBCs with the PNH phenotype (CD59�).
The proportion of C3� RBCs correlated
significantly with the reticulocyte count

and with the hematologic response to
eculizumab. In 3 patients in whom 51Cr
labeling of RBCs was carried out while on
eculizumab, we have demonstrated re-
duced RBC half-life in vivo, with excess
51Cr uptake in spleen and in liver. Binding
of C3 by PNH RBCs may constitute an
additional disease mechanism in PNH,
strongly enhanced by eculizumab treat-
ment and producing a variable degree of
extravascular hemolysis. (Blood. 2009;
113:4094-4100)

Introduction

Paroxysmal nocturnal hemoglobinuria (PNH) is a hematologic disorder
characterized by the clonal expansion of one or a few hematopoietic
stem cells that are incapable of glycosylphosphatidylinositol (GPI)–
anchor biosynthesis, due to an acquired somatic mutation in the
phosphatidylinositol glycan class A (PIG-A) gene.1-6 Affected progeny
cells are deficient in all GPI-anchored surface proteins, including the
complement regulators CD55 and CD59.7-9 Thus, PNH red blood cells
(RBCs) are exquisitely vulnerable to activated complement, and particu-
larly to the membrane attack complex (MAC),10,11 resulting in chronic
intravascular hemolysis with recurrent exacerbations, and consequent
anemia.

Eculizumab (Soliris; Alexion Pharmaceuticals, Cheshire, CT)
is a humanized monoclonal antibody against complement fraction
5 (C5), which inhibits MAC formation.12 Eculizumab has proven
highly beneficial in the treatment of transfusion-dependent PNH
patients.13-15 In a placebo-controlled phase 3 trial, eculizumab led
to a marked decrease in transfusion requirement, and improvement
in anemia, fatigue, pain, shortness of breath, and QoL measures.15

These data were confirmed in 2 subsequent studies,16,17 the last one
also suggesting that eculizumab may reduce the occurrence of
thromboembolic events.17

In the face of such gratifying clinical results, it is clear that not all
patients respond equally to the treatment. In some patients there is only

little improvement of anemia, and some still require blood transfusion at
times, with signs of persistent hemolysis (reticulocytosis, elevated
unconjugated bilirubin).15,16 In this work, we have investigated the
notion that in patients with suboptimal hematologic response to eculi-
zumab there may be extravascular hemolysis mediated by complement
effector mechanisms other than MAC.15 Based on flow cytometry
analysis of complement fraction 3 (C3) on RBCs, we provide evidence
of selective C3 opsonization of GPI-negative red cells, the extent of
which tends to correlate with the clinical response to eculizumab, and
may be the manifestation of a novel phenomenon in the pathophysiol-
ogy of PNH.

Methods

Patients

The study was conducted in 56 Italian PNH patients (Table 1); biologic
samples were collected by venipuncture according to standard procedures,
after informed consent was obtained in accordance with the Declaration of
Helsinki as approved within the study protocol by the Institutional Review
Board at the Federico II University of Naples. Twenty-eight patients were
studied at diagnosis, before any treatment; 13 of them were retested while
on eculizumab. An additional 28 patients were tested when they were
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already receiving eculizumab. Several patients were analyzed repeatedly
during the treatment; 5 patients were studied bimonthly during the first
3 months of treatment. As controls, we collected samples from 5 cold
agglutinin disease (CAD) patients (positive controls) as well as from
10 healthy subjects (negative controls).

Eculizumab treatment

Eculizumab was administered according to the standard schedule15-17 (900 mg
every 14 � 2 days, after a loading phase of 600 mg every 7 � 1 days for 4 doses).
Most patients were initially registered either in the TRIUMPH (C04-001)15 or in
the SHEPHERD (C04-002)16 trial, all eventually merging in the Extension trial
(E05-001)17 at the time of our biologic study; the residual patients started the
treatment according to the Italian Early Access Program. Fifteen patients had no
indication to start the anticomplement treatment. Of the 41 PNH patients

receiving eculizumab, only one had a serious adverse event requiring emergency
admission (high pyrexia associated with hypotension: no organism was isolated,
and the patient made a complete recovery). Three patients discontinued the
treatment (for transplantation due to progression to severe aplastic anemia,
spontaneous recovery from PNH, and pregnancy). Some patients presented
minor adverse events, mainly headache and mild infections. All patients showed
a dramatic reduction of intravascular hemolysis, as documented by the LDH level
(Table 1). For the purpose of the study, we classified patients as follows:
(a) optimal hematologic responders: patients achieving transfusion independence
with Hb levels of 110 g/L or higher; (b) major responders: transfusion indepen-
dence and Hb levels of 80 g/L or higher; (c) partial responders: reduction (at least
50%) without abrogation of blood transfusions; (d) minor responders: no
significant change in blood transfusion requirement or Hb levels but with marked
reduction of LDH levels. According to these categories, 15 patients (37%)

Table 1. Characteristics of PNH patients studied while on eculizumab

UPN Sex TE

Tx/y Hb ARC LDH T Bil
% PNH
RBCs

% C3�

PNH RBCs
Hematologic

responseBefore During Before During Before During Before During Before During

6 F 2 0 9.6 13.0 100 120 743 239 14 19 55.2 3.3 Optimal

7 M 4 0 5.0 14.0 150 130 2282 339 22 26 62.7 34.6 Optimal

8 M BC 12 0 9.1 11.8 90 90 1264 255 106 250 19.5 0.5 Optimal

9 M 6 0 8.0 13.2 212 312 1934 266 22 28 78.0 21.3 Optimal

14 M BC 12 0 11.0 13.3 42 201 489 170 47.4 54.1 82.0 0.6 Optimal

16 M 9 0 7.5 12.9 234 179 1216 192 10.6 36.7 98.0 34.1 Optimal

19 F 9 0 6.5 12.0 94 147 1365 374 26.3 19.1 33.0 8.3 Optimal

21 M 22 0 7.5 13.0 290 150 5311 200 180.8 129.4 96.1 55.2 Optimal

23 M 10 0 8.5 11.5 155 130 1306 335† 28 26 37.6 22.6 Optimal

25 M 48 0 10.1 12.9 176 55 1524 201 33 14 12.0 1.7 Optimal

26 F 12 0 8.5 11.5 126 126 1800 259 28 26 78.7 17.0 Optimal

34 F DVT 2 0 7.9 11.0 130 140 3915 529 11 16 76.0 15.8 Optimal

36 M CVA,PVT 0 0 10.0 12.8 130 54 680 225 26 30 64.5 20.2 Optimal

40 F 3 0 7.0 11.0 97 120 1392 177 46 40 48.0 21.9 Optimal

41 M 0 0 9.0 11.7 241 285 2100 250 29 19 54.0 59.3 Optimal

3 F 11 0 8.0 10.6 240 310 2051 228 24 24 61.0 33.6 Major

4 F CVA 2 0 8.7 10.0 160 340 2145 460 25 21 65.0 21.5 Major

5 F 2 0 8.1 9.3 240 230 1438 969† 15 27 68.0 10.3 Major

10 F 11 0 7.0 10.5 60 130 2545 209 41 16 91.0 52.7 Major

13 M 4 0 10.5 9.9 51 204 1986 232 25.2 41.9 88.0 61.4 Major

15 F 10 0 7.8 10.9 202 274 1170 211 30.8 20.9 50.0 44.4 Major

17 M 0 0 8.0 10.0 198 299 3968 860† 57.4 73.5 88.7 16.6 Major

20 M Yes 48 0 7.5 10.0 150 226 7190 296 73.0 47.9 98.5 58.2 Major

22 M 0 0 7.5 10.0 140 185 1216 356† 16 18 60.0 43.3 Major

27 F 0 0 9.3 10.5 230 139 727 250 14 16 82.0 8.5 Major

28 F 0 0 9.0 10.3 130 151 1500 360† NA NA 45.0 22.2 Major

29 F 12 0 9.2 10.4 165 135 2440 252 24 15 69.0 26.1 Major

30 F 2 0 8.2 10.2 274 170 2388 217 35 24 67.0 34.3 Major

31 F No 4 0 7.0 8.5 1940 230 1940 210 30 38 36.0 33.3 Major

32 F 1 0 7.2 8.9 120 20 1700 310 54 24 67.0 5.2 Major

33 F 6 0 7.3 9.5 320 270 3436 479 16 35 92.0 45.7 Major

35 M NA 0 10.0 10.9 252 205 2300 290 45 NA 22.0 22.7 Major

37 F 30 0 9.0 10.3 454 400 4191 269 45 29 96.0 60.4 Major

1 F 15 6 7.3 8.7 200 160 2329 261 27 12.7 48.0 33.3 Partial

2 F 17 10 9.1 9.9 220 290 1954 221 89 148 95.0 36.0 Partial

11 M 36 13 8.5 6.3 420 400 6553 993† 21 20 57.0 51.2 Partial

18 F 16 4 7.0 9.5 266 230 1837 200 26.7 38.3 42.6 46.2 Partial

38 F Yes 30 18 6 9 256 401 1400 288 51 29 10 5.0 Partial

12* F 21 21 7.0 7.1 220 121 NA 309† NA NA 12.0 4.2 Minor

24* F 4 24 8.4 8.6 167 208 2000 331 31 40 50.7 15.8 Minor

39* M NA 17 6.0 7.0 180 190 1042 283 38 28 28.0 7.1 Minor

TE indicates history of thromboembolic events; Tx/y, number of packed red cell units transfused in the last year (before) or in 1 year during eculizumab treatment (after);
ARC, absolute reticulocyte count (� 109/L); LDH, lactate dehydrogenase, IU/L (normal range, �223); T Bil, unfractionated bilirubin (�M/L; normal range, �17); hematologic
response, hematologic response to eculizumab (see “Eculizumab treatment”); BC, Budd-Chiari syndrome; DVT, deep vein thrombosis; CVA, cerebrovascular accident; PVT,
portal vein thrombosis; and NA, not available.

All 41 patients had hemolytic PNH at the time of starting eculizumab; 3 patients (marked by *) subsequently developed aplastic anemia and were excluded by the
correlation analysis of C3 coating and hematologic response. Twenty-eight PNH patients were also analyzed free from eculizumab (of whom 15 were not listed in the table
because they never started treatment), and in none of them did we find C3� RBCs.

†Patients with eculizumab breakthrough (defined as inefficacy in blocking complement in the last days before the next drug administration).
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achieved an optimal response; 18 (44%), a major response; 5 (12%), a partial
response; and 3, a minor response (attributed to progression to aplastic anemia,
Table 1).

Direct antiglobulin test

The Coombs test was performed by gel microcolumns (DiaMed Italiana Srl,
Milan, Italy) after incubation with polyspecific and monospecific anti-IgG,
anti-IgM, and anti-C3d sera (DiaMed Italiana Srl). In addition, washed
RBCs incubated with anti-C3d antiserum were analyzed for agglutination
by microscope.

Flow cytometry

After collection of peripheral blood samples in EDTA, RBCs were washed
3 times and resuspended in saline at the final concentration of 104/�L; CAD
samples were preincubated for 30 minutes at 37°C to prevent possible
autoagglutination. After titration experiments, optimal staining conditions
were set as 50 �L RBCs incubated with 1 �L of either Ab4214 or Ab14396
(diluted 1:20), both commercially available FITC-conjugated anti-C3
polyclonal antibodies (Abcam, Cambridge, United Kingdom); these antibod-
ies, in contrast with that used for direct antiglobulin test (DAT), do not
contain any bridge leading to agglutination. In 2-color flow cytometry
experiments, 5 �L of a PE-conjugated anti-CD59 monoclonal antibody
(BD Pharmingen; no. 555764 [Becton Dickinson Italia, Milan, Italy] or no.
59PE [Valter Occhiena, Torino, Italy]) was added to identify PNH RBCs.
Samples were incubated at room temperature for 1 hour, and then analyzed
with a FACScan cytometer (Becton Dickinson Italia).

51Cr survival study

The radioisotopic RBC survival study was performed according to standard
methods18; in brief, after collection by venipuncture, RBCs were labeled
with 3.1 MBq sodium chromate (51Cr) and reinjected into the patients by
intravenous infusion. Radioactivity was then serially assessed on blood
samples (�-counter LKB-Wallac 1282 COMPUGAMMA; Wallac Oy,
Turku, Finland) and on anatomic sites, such as heart (background organ),
liver, and spleen (scintillation probe ACN Monogamma; L’Accessorio
Nucleare Srl, Milan, Italy). After normalization for background and isotopic
decay, radioactivity data were plotted to establish RBC half-life, whereas
counts on anatomic sites (corrected also for blood radioactivity; ie, heart
counts) were plotted to evaluate possible site(s) of erythrocatheresis.

Statistical analysis

Standard descriptive statistic measures were used to analyze flow cytometry
data. To increase conservativeness, nonparametric tests were used to
analyze relationship among flow cytometry data and clinical variables:
Kruskal-Wallis test, �2, and Spearman rank order correlation, as appropriate.

Results

Preliminary evidence of C3 coating by direct antiglobulin test
(DAT) and single-color flow cytometry

In a first series of 8 PNH patients, we performed a routine DAT by
gel microcolumns: in all but one patients the test was negative
before eculizumab and became positive for C3 during eculizumab
treatment (4 were strongly positive and 4 showed a double band on
the gel). The only exception was a female who, in addition to the
C3d positivity developed after treatment, also had a pretreatment
IgG positivity (which did not change after treatment; the patient
had concomitant antinucleus antibody as a sign of subclinical
immunologic disorder). On microscopic observation of RBCs
incubated with anti-C3d, all samples showed evident agglutination.
Then, we proceeded to flow cytometry studies on washed RBCs
using anti-C3 polyclonal antibodies; physical parameters assessed
by flow cytometry were used to exclude possible RBC autoaggluti-
nation. As a paradigmatic example of C3 binding, we used RBCs
from 5 CAD patients: in all cases we observed a single RBC
population with a substantial C3 binding (Figure 1A). In the 8 PNH
patients on eculizumab, we found C3 on a portion of RBCs (Figure
1A); the percentage of these C3-bound RBCs directly correlated
with the size of the PNH RBC population (P � .04).19 This finding,
together with a bimodal distribution of C3 coating on RBCs from
eculizumab-treated PNH patients (in contrast with the unimodal
distribution observed in CAD patients), prompted us to identify
which population of RBCs was binding C3.

Double-color flow cytometric analysis of C3 coating

Because the coexistence in the peripheral blood of 2 biologically
distinct RBC populations—PNH RBCs (CD59	) and normal
RBCs (CD59�)—is a distinctive characteristic of PNH patients, it
was important to establish whether only one or both were involved
in C3 binding. For this purpose, we designed a 2-color flow
cytometry protocol for testing all the Italian patients receiving
eculizumab, by combining a FITC-conjugated anti-C3 polyclonal
antibody with a PE-conjugated anti-CD59 monoclonal antibody.
As expected, all RBCs from healthy controls were CD59�/C3	; by
contrast, most RBCs from patients with cold agglutinin disease
were CD59�/C3� (Figure 1B). Untreated PNH patients had both
CD59�/C3	 and CD59	/C3	 RBCs, and no C3� RBCs (Figure

Figure 1. C3 coating on RBCs by flow cytometry.
(A) Single-color flow cytometry. (y-axis) Cell count; (x-axis)
FITC-conjugated anti-C3 polyclonal antibody (logarithm of
fluorescence). Each filled histogram represents a single
case, with the corresponding isotypic control (empty histo-
gram). CAD indicates cold agglutinin disease (positive con-
trol). In the PNH patients, a discrete population of RBCs
coated by C3 appears under eculizumab treatment.
(B) Double-color flow cytometry. (y-axis) PE-conjugated
anti-CD59 monoclonal antibody (logarithm of fluores-
cence); (x-axis) FITC-conjugated anti-C3 polyclonal
antibody (logarithm of fluorescence). Each dot plot
represents a single case. The typical bimodal pattern
(CD59� and CD59	) of untreated PNH patient becomes
trimodal under eculizumab treatment for the presence of
CD59	/C3� RBCs.
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1B). By contrast, all the 41 PNH patients receiving eculizumab
were characterized by the presence of 3 distinct RBC populations:
(1) CD59�/C3	 (normal RBCs); (2) CD59	/C3	 (PNH RBCs,
without C3); and (3) CD59	/C3� (PNH RBCs, with C3; Figure
1B). Thus, C3 binding was restricted to the PNH cells. In 13 of the
PNH patients, C3 binding was investigated before and during
eculizumab treatment: C3� PNH RBCs were constantly detectable
during eculizumab treatment and never before. In keeping with
these findings, in a single patient in whom eculizumab was
discontinued because of pregnancy, the C3� PNH RBCs gradually
decreased, and finally disappeared within 6 weeks from drug
withdrawal. The binding of C3 on RBCs was demonstrated only
during eculizumab treatment and it was restricted to PNH RBCs
having either total (type III PNH cells) or partial (type II PNH cells)
deficiency of GPI-anchored proteins (Figure 1B). However, be-
cause patients with type II RBCs were rare in our series, possible
differential C3 binding on the 2 types of PNH red cells has not been
investigated. The percentage of C3� RBCs calculated on the total
RBC mass (regardless of their normal or PNH phenotype) was
greatly variable among patients (Figure 2A) and correlated with the
percentage of RBCs with a PNH phenotype (P � .001; Figure 2B).
Given that only PNH RBCs were subjected to C3 binding, we
decided to use the percentage of C3� cells within the PNH RBC
population as a more reliable measure of C3 binding. Even the
percentage of C3� PNH RBCs was highly variable among indi-
vidual patients, ranging between 0.5% and 61.3% (median, 22.6%;
Figure 2C).

In 5 patients, the kinetics of C3 opsonization was analyzed longitudi-
nally with weekly blood sampling soon after the start of treatment: in all
of them C3 coating became apparent after the first week, and progres-
sively increased during the following 4 to 8 weeks (Figure 3A). In
7 additional patients, the periodic analysis of the percentage of C3�

PNH RBCs during a treatment follow up of 24 months showed that this
percentage was relatively stable in most of the patients (Figure 3B).
Only 2 patients showed a drop in C3� PNH RBCs, which was
associated with hemoglobinuria, rising LDH, and reduced Hb level; it
was attributed to eculizumab breakthrough.

C3 binding and hematologic response to eculizumab

To assess the biologic relevance of C3 binding to RBCs, namely its
relationship to increase in Hb levels (“Methods”), we grouped
patients according to their hematologic response to eculizumab.
Three patients who developed aplastic anemia while on eculizumab
(classified as minor responders in Table 1) were excluded from this
analysis. The percentage of C3� PNH RBCs resulted in differences
among the groups (P � .01, Figure 2D), with optimal responders
showing the lowest level of C3-coated RBCs. Given that major and
partial responders showed comparable level of C3 binding, we
limited our analysis to only 2 groups: optimal responders versus all
others. The size of the PNH RBC population (both before starting
eculizumab and at the time of the study) was not significantly
different between the 2 groups. By contrast, the percentage of C3�

PNH RBCs was lower in optimal responders than in all others

Figure 2. C3 coating in PNH patients. (A) Absolute percent-
age of C3� RBCs in untreated (n � 28) and eculizumab-
treated (n � 41) PNH patients. Each dot represents a single
case; bar represents median value. (B) Linear correlation
between percentage of C3� RBCs (y-axis) and PNH RBC
clone size (in percentage; x-axis). Each dot represents a
single case, with correlation line. Spearman rank order
correlation, r � 0.70, P � .001. (C) Percentage of C3� RBCs
within the PNH RBC population in untreated (n � 28) and
eculizumab-treated (n � 41) PNH patients. Each dot repre-
sents a single case; bar represents median value. (D) Per-
centage of C3� RBCs within the PNH RBC population in
eculizumab-treated PNH patients achieving optimal (n � 15),
major (n � 18), or partial (n � 5) hematologic response.
Each dot represents a single case; bars represent median
values. Kruskal-Wallis U test; P � .01. (E) Linear correlation
between percentage of C3� PNH RBCs (y-axis) and abso-
lute reticulocyte count (cells � 109/L) during eculizumab
treatment. Each dot represents a single case, with correla-
tion line. Spearman rank order correlation, r � 0.39, P � .001.
(F) Linear correlation between percentage of C3� PNH
RBCs (y-axis) and pretreatment LDH level (IU/L; normal
range, � 223). Each dot represents a single case, with
correlation line. Spearman rank order correlation, r � 0.54,
P � .001.
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(21.0 � 18.3 vs 32.6 � 18.1; P � .04); however, even among
optimal responders a few had a high percentage of C3� PNH
RBCs. Finally, compared with other variables related to hemolysis
(Hb, reticulocytes, bilirubin, LDH), the percentage of C3� PNH
RBCs correlated with the absolute reticulocyte count at the time of
the study (P � .001; Figure 2E) and with pretreatment level of
LDH (P � .001; Figure 2F).

In vivo RBC survival study

In 3 patients with suboptimal hematologic response and massive C3
RBC binding (UPNs 1, 2, and 3 in Table 1), we measured RBC survival
in vivo by 51Cr labeling. Even though the patients were on eculizumab
and had normal LDH, all showed markedly reduced RBC half-life
(10, 11, and 13 days, respectively; normal range, 25-35 days), with
excess counts on spleen and liver (Figure 4), confirming that extravascu-
lar hemolysis was taking place in vivo. One of these patients underwent
videolaparoscopic splenectomy; this procedure was clearly successful,
as the patient became transfusion-independent and had a significant
increase in Hb level.20

Discussion

Eculizumab is the first agent that has proven specifically effective
in the control of one of the cardinal manifestations of PNH,

intravascular hemolysis.13-17 Given its mechanism of action, namely
the blockade of terminal complement activation, which in turn is
responsible for the intravascular lysis of PNH RBCs, eculizumab is
a good example of targeted therapy.12

Although eculizumab effectively abolishes intravascular hemo-
lysis in all PNH patients, as demonstrated by prompt and sustained
reduction of the LDH level,13-16 the overall clinical benefit is not
uniform. We are not considering here patients with a substantial
component of bone marrow failure, in whom eculizumab may not
be even indicated. All patients included in this study satisfied the
criteria for florid hemolytic PNH, and in all of them we have
evidenced that on eculizumab their intravascular hemolysis was
abrogated. Among these, a majority became transfusion indepen-
dent and had a substantial increase in steady-state hemoglobin, but
only a fraction achieved hemoglobin values near to the normal
range. In addition, most patients had persistent reticulocytosis and
raised unconjugated bilirubin, suggesting that they had persistent
hemolysis. In this paper, we provide evidence for extravascular
hemolysis as a novel mechanism of red cell destruction in PNH
patients on eculizumab.

Figure 3. Kinetics of C3 coating on RBCs in PNH patients receiving eculizumab.
(A) Each line represents 1 of 5 newly diagnosed PNH patients starting treatment by
eculizumab and followed longitudinally. (y-axis) Percentage of C3� RBCs within PNH
erythrocytes; (x-axis) weeks from start of treatment. (B) Each line represents 1 of
7 PNH patients longitudinally analyzed while on eculizumab treatment with a 2-year
follow-up. (y-axis) Percentage of C3� RBCs within PNH erythrocytes; (x-axis) months
from start of treatment.

Figure 4. Results of in vivo RBC survival study. (A-C) Three PNH patients (UPNs
1, 2, and 3 in Table 1) with suboptimal response to eculizumab studied by 51Cr RBC
labeling. Excess counts on spleen (continuous line) and liver (dashed line) are plotted
after correction for background, radioactive decay, and blood radioactivity (ie, heart
counts), in function of time. Hatched and filled gray areas represent normal range for
liver and spleen excess counts, respectively. Increased entrapment of RBCs in
spleen and liver was observed in all the 3 PNH patients. (D) A representative example
of a patient with a hyporegenerative (nonhemolytic) anemia, showing no liver or
spleen excess count (RBC half-life, 35 days). (E) A representative example of a
patient with hemolytic anemia due to extravascular hemolysis, showing liver and
especially spleen excess counts (RBC half-life, 8 days).
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Our main finding is that in patients receiving eculizumab a
substantial proportion of red cells have bound C3 on their surface;
this is not the case for untreated PNH patients. C3 binding is strictly
confined to GPI-negative red cells (regardless of PNH III or PNH
II, as identified by Rosse and Dacie21). The most obvious explana-
tion for this finding is based on the consideration that PNH cells are
deficient in decay accelerating factor (CD55),10,22 a regulator of C3
convertase.23 Because eculizumab blocks the complement pathway
at level of C5, the earlier steps of the complement cascade,
including activation, deposition, and proteolytic cleavage of C3 to
C3b and further split products, are not affected by eculizumab.
Thus, CD55-deficient PNH red cells may become overloaded with
C3 fragments: this phenomenon is not detectable in untreated PNH
patients, presumably because these cells are rapidly destroyed due
to activation of the complement cascade progressing toward MAC
formation. C3� RBCs are apt to be recognized by macrophages that
bear complement receptors (CRs) in the spleen, in the liver, and
elsewhere, and this may explain persisting hemolysis, but of
extravascular origin, in PNH patients on eculizumab. We cannot
yet say whether this pathophysiologic process is activated de novo
by eculizumab (although direct activation of the complement
cascade is not expected from an antibody in which the Fc portion is
of the IgG4 subclass),12 or whether eculizumab brings to the fore a
process of extravascular hemolysis that already existed but was of
lesser degree and difficult to detect in the absence of C5 blockade.

We need to understand why we see extravascular hemolysis in
our patients on eculizumab, whereas this is not seen in subjects who
are genetically deficient in CD55 (the so-called Inab phenotype). It
has been shown that the CD55	 RBCs of Inab subjects do bind C3
in vitro, and this binding is markedly enhanced when CD59 is
blocked by an anti-CD59 antibody.24 Eculizumab-treated PNH
patients are a close mimic of that situation: they are CD55	 and,
because they are also CD59	, they have in fact a natural CD59
“block” as well; therefore, they bind C3 in large amounts in vivo,
unlike the Inab subjects, and this can be detected if the MAC lytic
action is suppressed by eculizumab.

Interestingly, it has been suggested that C3 binding is involved
in the physiologic clearance of senescent red cells.25 In this process,
different C3 fragments (C3b, iC3b, and C3d) may play different
roles,26,27 considering also that these have different affinities for
complement receptors on macrophages. Macrophage-mediated
extravascular hemolysis has been previously demonstrated in a
PNH mouse model; however, in that case the process was
considered complement independent.28

The fact that C3 binding mediates extravascular hemolysis is
supported by a positive correlation between the proportion of
C3-coated cells and reticulocyte count (Figure 2E). In addition,
there was a higher proportion of coated cells in suboptimal
responders versus optimal responders, although we observed
overlap between the 2 groups (Figure 2D). Even full responders
have persistently increased reticulocyte counts and elevated biliru-
bin (Table 1), suggesting that low-level extravascular hemolysis is
the rule rather than the exception.

We have firmly established that only PNH RBCs are susceptible
to C3 binding. We do not have a clear explanation of why only a
discrete fraction of PNH RBCs of our eculizumab-treated patients
are C3 positive. One possibility is that only a fraction of RBCs have
been exposed in vivo in some part of the body to a high-level
complement activation, such to produce a high level of C3 binding
only on those cells. Paroxysmal hemolytic attacks typical of PNH
in patients without C5 blockade are thought to result from

paroxysms of complement activation; similarly, they may produce
C3-mediated extravascular hemolysis during eculizumab treatment.

In addition, we do not yet know the basis for the variability in C3
coating among PNH patients, and why some patients have an optimal
clinical response despite a substantial proportion of C3-coated red cells.
One possibility is that the C3 processing on red cells may be different in
individual patients.Activated C3 is bound to PNH RBC surface through
glycophorin (GPA)29; the C3 convertase activity and the further process-
ing of glycophorin A–bound C3 to iC3b and C3dg on red cell surface is
strictly modulated by different complement regulators such as factor H
(FH),30,31 factor I (FI),32 complement receptor 1 (CR1),33 and even GPA
itself.34 Allelic variants of GPA and CR1 are known, and their possible
functional changes have not been fully investigated; polymorphic
mutations of FH or FI35 (as well as of membrane cofactor protein and C3
itself)36 have been found associated with atypical hemolytic uremic
syndrome. Such genetic variability may account for differences in C3
binding rate among PNH patients. In addition, C3 binding on RBCs
may be balanced by the active removal of C3 particles; for instance, C3
receptors on circulating white cells may work as a scavenging pathway,
thus avoiding RBCs entrapping in the reticuloendothelial system.37 The
clearance of C3� RBCs may also be regulated by patient-specific factors
interfering with the function of the reticuloendothelial system; this
would not be surprising, in agreement with what occurs in some other
extravascular hemolytic anemias.38 Finally, decreased membrane deform-
ability subsequent to C3 deposition may also play a role, independently
from complement receptors.39,40 Considering such a multitude of
mechanisms, one may hypothesize that suboptimal hematologic respond-
ers might benefit from additional therapeutic strategies targeting extravas-
cular hemolysis (eg, splenectomy20 or low-dose steroids), even though
these strategies were ineffective in the pre-eculizumab era. We must of
course consider that splenectomy may further increase the eculizumab-
related risk of serious infection, especially from Neisseria and other
capsulated bacteria; even though previous splenectomy is not consid-
ered a contraindication to eculizumab and no infectious complications
were observed in one patient submitted to splenectomy20 and in a few
patients who had been previously splenectomized (A.M.R. and B.R.,
unpublished data, 2008).

In conclusion, we have shown that eculizumab treatment is
associated with binding of C3 on a significant fraction of PNH red
cells, and this may lead to complement-mediated extravascular
hemolysis, which in some cases becomes limiting for the blood
transfusion–sparing efficacy of eculizumab. It is important to note
that these findings do not detract from the remarkable clinical
efficacy of eculizumab in patients with florid hemolytic PNH. Even
in patients with suboptimal response, eculizumab is beneficial in
abolishing or reducing transfusion requirement, abrogating hemo-
globinuria, relieving symptoms such as abdominal pain, and
reducing the risk of thrombosis. A more thorough understanding of
eculizumab-driven changes in PNH biology and especially of the
process of extravascular hemolysis that we have here reported may
help to identify patients who are likely to have suboptimal response
to eculizumab, and possibly to find ways to overcome this problem.
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