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Because protein function regulates the
phenotypic characteristics of cancer, a
functional proteomic classification sys-
tem could provide important information
for pathogenesis and prognosis. With the
goal of ultimately developing a proteomic-
based classification of acute myeloid leu-
kemia (AML), we assayed leukemia-
enriched cells from 256 newly diagnosed
AML patients, for 51 total and phospho-
proteins from apoptosis, cell-cycle, and
signal-transduction pathways, using
reverse-phase protein arrays. Expression
in matched blood and marrow samples
were similar for 44 proteins; another 7 had

small fold changes (8%-55%), suggesting
that functional proteomics of leukemia-
enriched cells in the marrow and periph-
ery are similar. Protein expression pat-
terns were independent of clinical
characteristics. However, 24 proteins were
significantly different between French-
American-British subtypes, defining dis-
tinct signatures for each. Expression sig-
natures for AML with cytogenetic
abnormalities involving �5 or �7 were
similar suggesting mechanistic common-
alities. Distinct expression patterns for
FMS-like tyrosine kinase 3–internal tan-
dem duplication were also identified. Prin-

cipal component analysis defined 7 pro-
tein signature groups, with prognostic
information distinct from cytogenetics
that correlated with remission attain-
ment, relapse, and overall survival. In
conclusion, protein expression profiling
patterns in AML correlate with known
morphologic features, cytogenetics, and
outcome. Confirmation in independent
studies may also provide pathophysi-
ologic insights facilitating triage of pa-
tients to emerging targeted therapies.
(Blood. 2009;113:154-164)

Introduction

The current classification of acute myeloid leukemia (AML) uses
the French-American-British (FAB) system based on morphologic
features, along with flow cytometric analysis of surface marker
expression, cytogenetics, and assessment of recurrent molecular
abnormalities. These classification schemes have prognostic rel-
evance, but they generally do not alter therapeutic recommenda-
tions.1 Furthermore, current prognostic models, based on clinical
and laboratory features, have low predictive power explaining less
than half of the outcome. Abnormal activation of signal transduc-
tion pathways (STPs), aberrant cell-cycle regulation, and evasion
of apoptosis are key events in malignant transformation.2-4 Expres-
sion of STP proteins is heterogeneous and prognostic in AML.5-10

Distinct molecular abnormalities and patterns of pathway activa-
tion in leukemic cells combine to suggest potential targets for
therapeutic intervention. However, unlike chronic myelogenous
leukemia, where all cases start with the same chromosomal
abnormality, AML is markedly heterogeneous with numerous
genetic aberrations. Consequently, knowledge facilitating individu-
alization of targeted therapies under development in AML is sorely
needed. Thus, an improved understanding of leukemic cell biology
might lead to improved classification schemes that more accurately
explain the heterogeneity of response and thereby guide the use of
targeted therapies on an individualized basis.

Novel array technologies enable the analysis of numerous
features at the level of DNA copy number, mutations, methylation,

mRNA transcription, regulatory microRNA, and emerging ap-
proaches to assess protein expression levels within cells and
cytokine and chemokine arrays to assess external forces acting on
leukemic cells. Gene expression profiling arrays have demon-
strated the ability to provide new classification schema and to
define prognostic subgroups in AML.11,12 The contribution of these
approaches to patient management and to understanding the
pathophysiology of AML remains to be fully elucidated. Transcrip-
tional profiles can provide superior tumor classification, response,
and prognostic information. However, RNA transcript levels often
do not correlate with protein expression13-15 and differentially
expressed genes may not necessarily be involved in the pathogene-
sis of a disease. Protein expression and posttranslational modifica-
tions, either alone or in concert with other profiling approaches,
could provide independent or complementary information not
captured by transcriptional profiles. Thus, the functional proteome
provides an untapped information source, which may contribute
prognostic information and provide important pathophysiologic
cues regarding response to current or emerging therapies as well as
potential new targets for therapy. It is therefore critical to determine
whether protein levels and posttranslational modifications can
provide novel determinants of cellular phenotype and biologic
behavior. Expression levels and activation of single or a few
proteins have been studied,5-9,16 but comprehensive analysis of the
complexity of intracellular STP is lacking because of lack of a
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feasible, quantitative, high-throughput proteomic technology appli-
cable to patient samples.

To generate a comprehensive proteomic profile of the level of
expression and activation of apoptosis, STP, and cell-cycle regulat-
ing proteins in AML, we used reverse-phase protein arrays (RPPA),
an approach where protein lysates from multiple samples are
printed onto a slide and probed with a single antibody to generate a
quantitative output.17-19 Proteins and their corresponding phospho-
proteins can be assessed, reflecting the activation state and
functionality of a given protein, pathway, or network.20,21 The
technique offers high sensitivity, throughput, interslide and in-
traslide (array) reproducibility, thereby overcoming the limitations
of conventional protein assay techniques (Western blotting or
enzyme-linked immunosorbent assays [ELISA]).20 The usefulness,
high precision, and reliability of RPPA for analysis of leukemic
specimens have been demonstrated.18

In this report, we present a set of 320 samples from 256 newly
diagnosed, AML patients profiled for 51 total and phosphoprotein
epitopes involved in STP, apoptosis, and cell-cycle regulatory pathways.
These protein expression signatures provide prognostic information and
could potentially guide the selection of targeted therapies.

Methods

Patient population

This study used a total of 539 bone marrow, peripheral blood, or pheresis
specimens from 442 patients with AML, including 97 cases with a
same-day bone marrow and peripheral blood or pheresis sample These
samples were collected at diagnosis (320 samples from 256 patients), in
a primary refractory state (59 samples from 47 patients), in relapse
(138 samples from 116 patients), in remission (9 samples from
8 patients), and while receiving therapy (n � 7). The same-day bone
marrow and peripheral blood or pheresis samples permit comparison of
expression between blood and marrow. This report is restricted to the
256 newly diagnosed patients: the associated demographics are de-
scribed in Table 1. Samples were collected for the Leukemia Sample
Bank at the University of Texas M. D. Anderson Cancer Center between
January 15, 1998, and March 9, 2006, on institutional review board
(IRB)–approved protocol Lab01-473, and consent was obtained in
accordance with the Declaration of Helsinki. Samples were analyzed
under an IRB-approved laboratory protocol (Lab05-0654).

Among the 256 newly diagnosed, previously untreated (new) patients,
120 were treated with anthracycline and high-dose ara-C (HDAC)–based
regimens, 49 on HDAC plus nonanthracycline chemotherapy regimens (eg,
fludarabine, HDAC, G-CSF [FLAG], fludarabine � HDAC [FA], clofar-
bine), 21 with other non–HDAC-based chemotherapy, 10 with targeted
agents, 10 with gemtuzumab ozogamicin (Mylotarg)-based regimens,
6 with demethylating or histone-deacetylating agents, 1 with low-dose
ara-c, one with stem-cell transplant as initial therapy, and 40 not treated at
M. D. Anderson Cancer Center.

Specimen collection and processing

Immediately after collection, samples were placed on ice and processed
within 2 hours by Ficoll-Hypaque gradient separation to yield a
mononuclear cell fraction. The isolated mononuclear cell fraction
containing blasts was further enriched by depletion of CD3�CD19� B
and T lymphocytes using magnetic antibody-conjugated sorting (Milte-
nyi Biotec, Auburn, CA) as previously described.7 The purity of the
leukemic samples was generally greater than 80% blasts after enrich-
ment. After isolation and washing, boiling hot protein lysis buffer (2�,
0.5 M Tris-HCl, pH 6.8, 2% sodium dodecyl sulfate, 10% glycerol, and
4% �-mercaptoethanol) was added to make a whole-cell lysate, which is
then aliquoted into single-use vials before cryopreservation.5,6 We have

previously demonstrated that protein made from cryopreserved AML
cells yield identical results on RPPA compared to protein made from
fresh cells on the day of collection, demonstrating that protein levels are
not adversely affected by cryopreservation of cells or protein lysates.18

Controls, reference standard, and cell lines

To correct for staining, background, and loading variation across (array)
slides, a positive control consisting of a mixture of 11 cell lines hereafter

Table 1. Demographics and clinical characteristics of the 256 newly
diagnosed AML patients in the study set

Variable category Number or %

No. of cases 256

% male 53.8%

Race

Asian 1.9%

Black 8.3%

Hispanic 12.8%

White 76.7%

Age, y

Mean 61.1

Median 63.8

Minimum 16.1

Maximum 87.2

FAB

M0 6.5%

M1 13.8%

M2 26.8%

M4 23.4%

M4EOS 3.4%

M5 2.3%

M5A 5.4%

M5b 3.8%

M6 2.7%

M7 1.9%

RAEBT 1.9%

Unknown 8.0%

WHO classification

AML with recurrent cytogenetic changes 29

AML with multilineage dysplasia 59

AML, therapy related 36

AML not otherwise categorized 134

Cytogenetics

Favorable 8.3%

Intermediate 45.7%

Unfavorable 44.5%

ND 1.5%

Zubrod PS

0-2 94.1%

3 or 4 5.9%

AHD

� 2 mo 32.1%

Response

CR 56.8%

CRP 3.2%

Early death 0.5%

Fail 8.1%

Resistant 31.1%

Inevaluable 0.5%

Relapse

Yes 54.1%

Alive

Yes 29.4%

RAEBT indicates refractory anemia with excess of blasts in transformation; AML,
acute myeloid leukemia; AHD � 2, antecedent hematologic disorder of greater than
or equal to 2 months; CR, complete remission; CRp, complete remission criteria met
except that platelets fail to reach 100 000 �L; Early death, death within the first
2 weeks after the start of induction therapy; and Fail, death occurring more than
2 weeks after the start of therapy.
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called “pooled control” lysate and the lysate buffer as negative control were
used. For expression controls, 18 cell lines, including baseline and growth
factor or cytokine-stimulated samples, were used and shown on the
schematic by the letter “C” (Figure 1A). Eighteen peripheral blood samples
from healthy volunteers (IRB-approved collection) served as normal
controls, shown by the letter “N” in Figure 1. To permit absolute
quantification of signal strength, we included 138 purified peptides from
sequences used to generate antibodies in the study as well as additional
controls, shown by the purple band encircling the patient samples.

Array assembly and printing method

For quantification purposes, 5 serial dilutions (1:3 dilution steps) of each
protein lysate were arrayed in 384-well plates (Genetix, Boston, MA).
Samples were printed onto nitrocellulose-coated glass slides (FAST Slides;
Whatman Schleicher and Schuell, Keene, NH) using an Aushon Biosytems
2470 Arrayer (Aushon BioSystems, Burlington, MA) with 175-�m pins
and a single touch. The samples were printed in replicate, one centrally
located and the other split on either side and arranged in a reversed
orientation (Figure 1A). Based on the sample concentration of 1 � 104 cells
per microliter and a printing volume of 2 nL/touch, we estimate that the
spots ranged from 85 cell equivalents of protein in undiluted, with
approximately 1 cell protein equivalent in the most diluted (1:81) spot
(Figure 1B). To permit topographic normalization, a sample of pooled or
negative control sample was printed at the end of each row of patient
sample, creating a grid across the whole slide, which appears as alternating
spots in the sample array (Figure 1C). Each slide contained 7968 dots. A
representative slide is shown in Figure 1C.

Antibody detection and array staining

A detailed description of the array methodology, including antibody
staining and detection, has been published.18 Briefly, after printing, slides

were incubated for 15 minutes in biotin blocking solution to block
endogenous peroxidase, avidin, and biotin before incubating slides in
protein block at 4°C overnight. Primary antibodies in concentrations
from 1:250 to 1:2000 were added for 1 to 2 hours with frequent rotation
(dilutions and manufacturers of antibodies, Table S1, available on the
Blood website; see the Supplemental Materials link at the top of the
online article). A biotinylated secondary antibody (antimouse or antirab-
bit), diluted 1:10 000 to 1:20 000, used as starting point for signal
amplification, was added for 1 hour. Subsequently, array slides were
incubated using the Dako Denmark (Glostrup, Denmark) signal amplifi-
cation system using catalyzed reporter deposition of substrate to amplify
the signal detected by the primary antibody.22 Slides were incubated in
streptavidin-biotin-peroxidase and biotinyl-tyramide/hydrogen peroxide
reagents each for 15 minutes with frequent washing in between. Finally,
3,3�-diaminobenzidine tetrachloride was cleaved by tyramide-bound
horseradish peroxidase, giving a stable brown precipitate with excellent
signal-to-noise ratio. This technique is sensitive and reproducible to the
femtomolar range as reported.18,23

Fifty-one proteins were assayed, including 30 total and 21 phosphopro-
teins (Table S1), using antibodies validated as described previously.18 We
have used a naming system where the protein name always comes first,
followed by description of any modification (eg, “p” for phosphorylation),
followed by the amino acid site of the modification when more than one
phosphorylation site was analyzed (eg, AKT.p308 vs AKT.p473). This
differs from the convention of using a lowercase “p” before the protein
name. This system facilitates alphabetical sorting and provides additional
detail regarding modification site. Many of these same samples (n � 125)
were used in our prior study looking at STP expression in AML by Western
blot.7 There was significant correlation between the RPPA and the Western
blot results for ERK(P � .03), ERK.p (P � .003), AKT.p473 (P � .02),
and PKC� (P � .04) using the same antibodies.

Figure 1. Array assembly, printing method, topographic normalization, and example slide. (A) Each letter represents a group of specimens. Replicates of the same
patient sample were printed in area “A” and in a reversed orientation in area “B.” As controls, 18 cell lines (MDA-MD-231, MDA-MD-231 stimulated with IGF, MDA-MD-468,
MDA-MD-468 stimulated with EGF, Hela HL-60, Jurkat [� 2 from separate sources], Jurkat incubated with anti-FAS antibody, K562, Kasumi-1, MV4-11, NB4, OCIAML3, Raji,
THP-1, U937, Y79) were printed in area “C” and 18 normal peripheral blood samples in area “N.” Purified peptides (n � 138) were printed encircling the patient samples, as
shown by the purple band. (B) Schematic showing the dilution series of patient samples. At the end of each row of patient samples, a positive control made of a mixture of 11 cell
lines (Hela, HL60, Jurkat, Kasumi1, K562, KG1, MV4-11, OCI-AML3 NB4, U937, Y79) (pooled control, shown as a red “�”) or negative control (protein lysis buffer, shown as a
“�”) is printed, creating a grid across the whole slide for negative and positive controls to permit topographic normalization. (C) Representative slide of phospho-AKT (Thr308).
The overlays in purple, red, and green covers the areas where the purified peptides, cell lines, and normal peripheral blood samples and positive and negative control are
located as depicted in Figure 1A. The insert demonstrates phosphorylated and unphosphorylated AKT peptide specifically detected by the antiphospho-AKT (Thr308) antibody.
(D,E) The 3-dimensional (D) topographic map of the negative control generates a 3-dimensional topographic map that can be used to correct for background, whereas the
3-dimensional grid of the positive controls sets the scale for quantification. A topographic map from a slide (probed for BAK) with low background that is even across the slide
(D) and another (E) from the slide (probed for MCL1) with the most background variation across the slide are shown.
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Data analysis, normalization, and statistics

Hybridized slides were scanned on a desktop scanner (Hewlett Packard,
Palo Alto, CA) at an optical resolution of 1200 dpi in 16-bit grayscale and
saved as TIFF files. Protein expression intensity of each spot was measured
with an automated software program MicroVigene (VigeneTech, North
Billerica, MA). The dilution series of the samples provide a dilution-
concentration-expression curve providing relative expression intensities.
These numbers were used for data processing and calculation after
standardization and topographic normalization. All analyses were per-
formed using the R Statistical Programming Environment, version 2.4.0.

Topographic normalization

Positive and negative controls were positioned across the slide at the end of
each sample as described in “Array assembly and printing method.” This
enables normalization to adjust for variations in background staining.
Negative controls (lysis buffer) set the baseline noise for background
correction and positive controls (cell lines, peptides) provide expression
intensities to set the scale for protein quantification in the samples.
Background variation was variable, as shown in the topographic maps
ranging from negligible to the most extreme (Figure 1D,E). After subtract-
ing local background estimates from the MicroVigene quantifications, we
subtracted the median background-corrected values of the negative controls
from all spots. This ensured that the negative controls were centered around
zero and resulted in data where replicate spots yielded more reproducible
values and where the slope of the linear part of the concentration curves
more closely matched the known dilution step. Next, the median intensity,
M, of the positive controls was computed, and each dilution series was
normalized by dividing by M times the intensity of the nearest positive
control. Other processing methods were evaluated, but this procedure
yielded superior results, resulting in the highest correlation (R2 	 0.8)
between the replicates on a slide. Correlation between sample 1 and sample
2 on the slide was very high with R more than 0.7 for 59%, more than 0.5 in
92% of the proteins studied after topographic background correction.
Neeley et al (S. Neeley, K. A. Baggerly, S.M.K., manuscript submitted)
provide a more detailed description of the algorithm. The average multipli-
ers for correction for loading and regional staining usually ranged between
0.624 and 1.376.

Summarization of dilution series

After preprocessing, dilution series were summarized by fitting a joint
4-parameter logistic model as described by Tabus et al.24 We used our own
implementation of this algorithm in an R package, SuperCurve 0.931
(http://bioinformatics.mdanderson.org/Software/OOMPA).

Various clustering methods were used. Validity of clusters was assessed
using perturbation bootstraps25 and the gap statistic.26 Associations between
protein expression levels and categorical clinical variables were assessed in
R using standard t tests, linear regression, or mixed-effects linear models.
Conservative Bonferroni corrections were performed to account for mul-
tiple statistical parameters (numbers of samples and proteins/antibodies)
when calculating statistical significance.

The dataset is available at http://bioinformatics.mdanderson.org/
supplements.html (under “RPPA Data in AML”) or as an Excel file from
skornblau@mdanderson.org.

Results

Blood and marrow specimens can be used interchangeably

This array contained same-day blood/pheresis and marrow samples
from 97 patients, permitting a direct comparison of protein levels in
blast cells from blood and marrow. If expression was significantly
different depending on the source, then separate analysis would be
required for blood and marrow. In contrast, if they were similar,
then all the samples could be combined into a single analysis.
Similar to our previous observations in Western blot27 and RPPA,18

linear mixed effects models revealed no statistically significant
differences in expression intensities between blood and marrow for
most (44 of 51) proteins. However, 7 proteins had statistically
significant differences (Table 2): 3 were higher in blood and
4 higher in marrow. Although these differences were statistically
significant after Bonferroni correction, 4 had absolute fold differ-
ences less than 20%, making it doubtful that these differences have
biologic relevance. The others, SRCp527, S6RP.p228, and
S6RP.p240-244, had fold differences ranging from 28% to 55%,
which might reflect proliferation potential (“Discussion”). Conse-
quently, blood and marrow-derived samples were combined for the
subsequent analysis. Replicate measurements from the same pa-
tient were averaged, with the 7 proteins where blood and marrow
levels differed being adjusted to remove this small effect.

Correlation of protein profiles with clinical characteristics

No correlation between individual protein expression levels and
traditional clinical characteristics (eg, age, sex, race, infection
status, performance status, antecedent hematologic disorder, his-
tory of prior malignancy, radiation or chemotherapy, white blood
cell count, platelet count, hemoglobin, creatinine, bilirubin, albu-
min, percent blood and marrow blasts, percent cells expressing CD
7, 10, 13, 19, 20, 33, 34, cytogenetics, and treatment regimen) was
observed (data not presented).

Correlation of protein profiles with FAB subtypes

Because the FAB classification distinguishes leukemias based on
differentiation pathways and the degree of maturation, we specu-
lated that there might be unique protein expression signatures for
different FAB types. We used linear regression, with individual
proteins, to perform a one-way analysis of variance (ANOVA) with
Bonferroni correction and observed that 24 proteins showed
significant heterogeneity in protein expression levels between FAB
classes. Because the ANOVA does not describe which FAB classes
have significantly different expression levels for a protein, we used
Tukey’s test for honestly significant differences to determine which
mean differences between classes were statistically significant.
Next, we clustered the significant proteins based on their patterns
of protein expression across the newly diagnosed AML patients and
produced a heatmap of their (standardized) average expression by
FAB category (Figure 2). We found 3 clusters of proteins that
tended to track similarly within an FAB class. The first cluster was
enriched for total and phosphorylated signal transduction proteins
(PKCA, PKCA.p, ERK2, AKT.p308, P38.p P70S6K, P70S6K.p,
and Src.p527); proteins in this cluster were primarily characterized
by lower expression in M0, M1, M2, with higher levels in the other
FAB types. The differences between early myeloid (M0, M1, M2)
were statistically significant different in comparison to FAB
subtypes with a monocytic component (M4, M5). The second

Table 2. Proteins with different expression between blood and
marrow

Protein P Fold

Blood higher

BAK 2.5 � 10�4 1.082

BAD 1.3 � 10�4 1.113

SRCp527 5.5 � 10�8 1.278

Marrow higher

Survivin 3.8 � 10�7 1.113

MTOR.p 8.5 � 10�4 1.123

S6RP.p235 2.8 � 10�7 1.400

S6RP.p240–244 1.0 � 10�16 1.553
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cluster contains PTEN and PTEN.p; it is characterized by signifi-
cantly lower expression in M6 and M7. The third cluster is enriched
for apoptosis (BAD, BAK, BCL2, BCLXL, BAD.p136, SMAC),
cell cycle or differentiation regulating proteins (Myc, CCND1,
SSBP2), and activated STAT proteins. In general, these proteins
have significantly higher expression in the myeloid subtypes (M0,
M1, and M2) compared with the monocytic (M4, M5), erythroid
(M6), or megakaryocytic (M7) subtypes. Within this group,
�-catenin (BCAT), TP27, and BCL-XL exhibit a slightly different
pattern, with significantly higher expression in M6 or M7.

Expression patterns and cytogenetics

Recurrent cytogenetic abnormalities currently provide the stron-
gest available predictors of therapy response and outcome in
AML.28 To define the relationship between protein expression and
cytogenetic groups, we computed the average protein profile for
each cytogenetic profile, then clustered these profiles using com-
plete linkage and Pearson correlation (Figure 3). Based on the gap
statistic,26 there are 5 clusters in the data: (1) a cluster driven by
changes involving chromosomes 5 or 7, (2) Ph1, (3) t(8;21), 11q23,
and IM, (4) the complex karyotype of simultaneous �5, �7, and
11q23, and (5) a miscellaneous cluster including diploid, t(6;9),
inv(16), �8, and �21. AMLs with cytogenetic aberrations are
associated with distinct protein patterns that differ from the mean.
In contrast, the diploid and miscellaneous AMLs show an “aver-

age” rather than a specific expression pattern, probably reflecting
heterogeneity in these cases.

As with the FAB subtypes, we performed gene-by-gene ANO-
VAs to determine which individual proteins were differentially
expressed in patients with different cytogenetic abnormalities.
After Bonferroni correction, only 2 proteins were found to be
significantly different: Tp53 (P � 1.32 � 10�13) and BAX
(4.73 � 10�7) across all groups. Tp53 was significantly higher
whenever there was an abnormality of chromosome 5 or chromo-
some 7. BAX, by contrast, had 3 distinct levels of expression: low
when there were abnormalities of 5 or 7, intermediate in 11q23
(even in the presence of losses of 5 and 7), inv(16), diploid, or
miscellaneous samples, and high in all other categories. In addition,
cases with a FMS-like tyrosine kinase 3–internal tandem duplica-
tion (FLT3-ITD) were observed to have significantly higher
expression of pMTOR (P 
 .001), pStat5 (P 
 .001) AKT,
Badp136, BAX, MEK, MTOR, pPTEN, pStat1(P 
 .01) and
MYC, PKC�, pPKC�, SRCp527 (P 
 .05). Association between
FLT3-ITD and Stat5 phosphorylation29,30 and PKC� mRNA expres-
sion31 has been previously described.

Principal component analysis and protein signatures groups

We hypothesized that proteins would form “constellations” in
which the components provided predictive information. The most
commonly used similarity measures (Euclidean distance or Pearson

Figure 2. Hierarchical clustering of antibodies (AB)
differentially expressed among FAB groups. The heat-
map graphically represents the 24 AB whose expression
levels were significantly different between the FAB sub-
groups. The number of patients in each group is shown
along the bottom of the figure. Protein levels were
normalized such that the expression level of M1 was set
to 0 and the expression of all other proteins is shown as
fold change from this baseline. Each protein was standard-
ized so that each protein has mean 0 and SD 1 across the
categories. Expression is scaled so that green represents
low expression and red represents high expression.

158 KORNBLAU et al BLOOD, 1 JANUARY 2009 � VOLUME 113, NUMBER 1

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/113/1/154/1303434/zh800109000154.pdf by guest on 04 June 2024



Figure 3. Clustering by cytogenetics average protein expression intensity of patients within cytogenetic risk groups based on unsupervised hierarchical
clustering. Expression is scaled so that green represents low expression and red represents high expression.
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correlation) treat negatively correlated variables as highly distinct.
To deal with this issue, we clustered the proteins using a distance
d � (1 � ���) based on the absolute value of the Pearson correla-
tion, �. This clustering suggested the existence of 10 protein
constellations (CNSTN; Figures 4, S2). In many constellations, the
proteins have related functions supporting the idea that the
approach has functional validity. For example, CNSTN-9 contain
phosphorylated signaling pathway members TP38.p, MEK.p,
ERK.p, and inactivating phosphorylation of 2 of their targets,
GSK3.p and BAD.p112; CNSTN-6 contains the cell survival
signaling proteins AKT.p308 and AKT.p473 inversely correlated
with apoptosis regulating proteins BLC2, Bad, and SMAC;
CNSTN-1 has apoptosis-related proteins survivin, XIAP, and Bak
in a positive correlation with cyclinD1 and negative correlation
with phosphorylation of S6, which would promote transcription
and proliferation; and CNSTN-4 has phosphorylated forms of
STAT1, 5, and 6. Other constellations contain proteins active in
separate pathways that might have overlapping functions; eg,
CNSTN-8 has both p53 and MCL1, which might be expected to
affect apoptosis via separate mechanisms.

To integrate and summarize the information from negatively
and positively correlated proteins within a constellation, we
performed a principal components analysis on each constellation
retaining the first principal component. For each constellation and
patient, this method computes a score, which is a weighted sum of
protein levels, which describes the extent to which the constellation
is present in the protein expression pattern of that patient. For
example, in the first principal component from CNSTN 7, the
proteins SRC and SRC.p527 get negative weights (�0.83 and
�0.47, respectively), whereas S6 and SSBP3 get positive weights
(0.10 and 0.27, respectively). We then clustered the patients, using
Pearson correlation and complete linkage, based on these scores.
Based on the gap statistic, the scores separate the patients into
7 protein signature groups (SGs), although there is some indication
that the high level split into 2 groups (group A � SG1, SG2, and
SG6; group B � SG3, SG4, SG5, and SG7) gives the most reliable
separation (Figure 4). The heatmap showing the average normal-
ized expression for each protein, within each SG, shows that in
some SGs all proteins within a particular constellation are posi-
tively correlated (eg, CNSTN-5, the GSK3, BCL-XL, TP27, BCAT,
DJI group), whereas in others some proteins are positively corre-
lated with some members and negatively correlated with others (eg,
CNSTN-6 with P70S6K.p, P70S6, AKT.p308, AKT.p473, which
correlate with each other, but are negatively correlated with other
constellation members BAD, SMAC, SSBP2, BCL2). This arrange-
ment allows for better visualization of relative over and underex-
pression proteins within each of the 10 protein constellations
within each of the 7 SG.

The distribution of patients with favorable, intermediate,
or unfavorable cytogenetics among the 7 SG was signi-
ficantly uneven (�2 test, � 40.63 on 12 degrees of freedom,
P � 5.66 � 10�5; Table 3). Patients with favorable cytogenetics
were significantly overrepresented in SG2 and underrepresented
in SG7. Patients with intermediate cytogenetics were overrepre-
sented in SG3 and SG6 and underrepresented in SG5. Patients
with unfavorable cytogenetics were overrepresented in SG5 and
SG7 and underrepresented in SG3.

Effect of SG on remission, relapse, and survival

Although the complete response (CR) rates within the 7 SG ranged
from 42% to 73%, these differences were not statistically signifi-
cant by �2 test (8.04 on 6 degrees of freedom, P � .24). Rather than

combine groups arbitrarily, we analyzed the data using a hierarchi-
cal Bayesian model. The response within SGi was assumed to be
binomial with rate i. The response rates were assumed to arise
from a common beta distribution i � Beta(�, �). We used an
uninformative prior on the natural transformed scale:

p(log(�/�), log(� � �))� ��(� � �)�5/2

For details on the model, see section 5.3 of Gelman et al.32 We
found that SG7 (which is enriched for unfavorable cytogenetics
and depleted of favorable cytogenetics, with an overall CR rate of
42%) has a posterior probability of at least 80% of having a lower
CR rate than SG2, SG3 SG4, or SG6, and at least a 69% posterior
probability of having a lower CR rate than SG1 or SG5. We also
found that SG2 (which is enriched for favorable cytogenetics, with
an overall CR rate of 72%) has a posterior probability of at least
70% of having a higher CR rate than every other group except for
SG6. The relapse rates, which ranged from 37% in SG3 to 75% in
SG6 were not statistically significantly different by �2 test (7.79 on
6 degrees of freedom, P � .25).

Next, we looked at associations between the SG and overall
survival. Using a Cox proportional hazards model, we found a
significant difference in overall survival (log-rank test; score � 16.6
on 6 degrees of freedom; P � .011; Figure 5A). We found that
patients in SGs SG2, SG3, and SG4 had the best survival (hazard
ratios, 1 � HR � 1.28), whereas patients in SG5 (HR � 2.29),
SG7 (HR � 2.14), and SG6 (HR � 2.13) had the worst survival.

Having observed that SGs were associated with cytogenetics,
we also evaluated a Cox proportional hazards model that used both
cytogenetics and SGs as predictors of survival. In the joint model,
cytogenetics remained highly significant (P � 4.18 � 10�7),
whereas the sample group showed weaker evidence of significance
(P � .13). When stratified by cytogenetics, the response rate varied
by SG for patients with intermediate (range, 40%-67%) and
unfavorable cytogenetics (range, 30%-75%; Table 4), but not for
those with favorable cytogenetics where all patients achieved
remission. For all 3 cytogenetic groups, the relapse rates differed
within the different SG (Table 4). As might be expected, these
SG-based differences in remission and relapse rates combined to
result in different survival outcomes when the effect of SG on
survival within each cytogenetic group was determined. Within
cytogenetics categories, SG was not significant However, among
FLT3-ITD–positive diploid cases, the protein expression signature
was still prognostic (P 
 .001) with patients in SG2 having the best
survival, SG3 having intermediate survival, and the other groups
having extremely poor survival (Figure 5B).

Discussion

This study has demonstrated that proteomic profiling of AML
provides significant details about AML that complement and
expand on known classification and prognostic information. We
used RPPA because of its high sensitivity, quantitation, and high-
throughput capabilities. The sensitivity of RPPA is evident by the
ability to frequently see signal from the fifth dilution, correspond-
ing to the protein equivalent of a single cell. The high-throughput
capability is demonstrated by the large number of samples analyzed
on a single slide (N � 539) and the fact that the 51 slides were
stained, scanned, and analyzed in a 10-day period. Several observa-
tions emerge from this dataset.

Protein levels in AML cells do not appear to exhibit biologically
relevant differences between blood and marrow-derived specimens
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Figure 4. Protein expression against SGs. Proteins were clustered into 10 constellations shown by the 10 colored boxes along the left axis and the yellow lines surrounding
each constellation. Based on the score for each constellation for each patient, an overall score was generated, and this divided patients into 7 protein SGs (bottom of heatmap).
The average score for each protein constellation within each SG is shown. An additional heatmap showing the expression of each protein in each individual patient is available
online as Figure S2. The fold change between �2 SDs and 2 SDs for each individual protein, corresponding to the �2 (green) to �2 (red) color gradient bar shown in the upper
left corner, is listed to the right of the protein name.
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for most proteins. The presence of 97 same-day blood and marrow
specimens permitted direct comparison of expression in these
2 compartments. The majority of proteins examined (44 of 51) had
statistically indistinguishable levels of expression. The fold differ-
ences for BAD, BAK, MTOR.p, and survivin, although statistically
different, are sufficiently modest (range, 1.08-1.20) that they
probably don’t have biologic impact. There may be biologic
relevance to the observations that levels of SRC.p527, an inactivat-
ing phosphorylation, are 28% higher in blood, and levels of

activated S6RP, phosphorylated on amino acids 235 or 240 to 244,
was 40% to 55% higher in marrow. Together, these suggest that
circulating cells are in a lower proliferative and transcriptional state
compared with marrow bound leukemic blasts. This finding
supports our previous observations in 8 proteins using Western
blotting27 and by others with gene-expression profile.11 The similar-
ity between marrow and circulating cells indicates that either can
be used for proteomic analysis of AML provided that similar
methodology is used to generate a leukemia-enriched fraction. For
patients with circulating leukemic blasts, this could obviate the
need to undergo bone marrow aspiration with its associated
procedure costs and discomfort.

Proteomic profiling identified differences between subtypes of
AML in the FAB classification schema, which classifies AML,
based on lineage differentiation and maturation. A subset of
24 proteins showed differences in expression across the FAB
classifications, and the patterns of expression easily distinguish
purely myeloid subtypes M0, M1, and M2 from M4 and M5
subtypes with monocytic components, and all of these were distinct
from erythroleukemia and megakaryocytic leukemia. These data
might be used to suggest treatment targets and guide selection of
targeted therapies in different FAB subtypes. For example, expres-
sion of phospho-Stat 1 and 5 and several apoptosis-related proteins
was higher in M0 to M2 subtypes relative to M4 and M5. In
contrast, expression levels of phosphorylated signal transduction
proteins AKT, TP38, PKC�, and SRC.p527 were higher in the
monocytic subtypes. These patterns suggest that chemoresistance
within FAB M0 to M2 leukemias may be more dependent on
resistance to apoptosis, whereas growth and resistance to therapy in
M4/M5 subtypes might be more dependent on the proliferative and
antiapoptotic signals derived from activation of STP.

Similarly, different patterns of protein expression distinguished the
major recurrent cytogenetic abnormalities observed in AML. Histori-
cally, patients with abnormalities on chromosome 5 and
7 have similar poor response rates and survival with current therapy.
Hierarchical clustering of proteomic data demonstrated that �5, 5q�,
and �7 or the combinations of �5 and �7 or �5, �7, and �8, had
similar protein expression patterns. A similar clustering of �5 and �7
were observed with gene-expression profile.12 Thus, it appears that the
different cytogenetic changes have similar effects on protein expression
and activation within AML blasts. Dissecting the protein patterns and
subjecting them to pathway analysis may yield direct insight into the
transforming mechanism(s) underlying these cytogenetic abnormalities.
Of note is that p53 expression was highest in these patients, a group
shown to have the highest rates of p53 mutations in AML,33 suggesting
that use of agents targeting p53 activity or expression, such as MDM2
agonists,34 might be active in these patients. Other examples are a

Table 3. Distribution of cytogenetic risk groups

SG group

Observed (expected) count

Favorable Intermediate Unfavorable

1 1 (2.83) 19 (15.84) 14 (15.33)

2 12 (4.17)* 19 (23.30) 19 (22.54)

3 4 (3.42) 25 (19.10)* 12 (18.48)*

4 2 (3.25) 19 (18.17) 18 (17.58)

5 1 (2.67) 8 (14.91)* 23 (14.42)*

6 2 (2.92) 21 (16.31)* 12 (15.78)

7 0 (2.75)* 12 (15.38) 21 (14.88)*

The 3 major cytogenetic risk groups are unevenly distributed across the seven
protein signature groups. Each cell contains the observed (and expected under the
null hypothesis) number of patients in each group.

*Observations that differed most from the expected values (and thus contributed
significantly to the � 2 test).

Figure 5. Overall survival in SGs in all patients and in diploid FLT3-ITD cases.
Kaplan-Meier estimates of proportion of surviving patients over time in weeks for
(A) all cases and (B) cases with diploid cytogenetics and a FLT3-ITD.

Table 4. Complete remission and relapse rate by signature group
stratified by cytogenetic risk groups

SG group
Favorable, %
CR/relapse

Intermediate, %
CR/relapse

Unfavorable, %
CR/relapse

1 100/0 67/30 30/100

2 100/33 65/55 54/43

3 100/50 67/31 33/67

4 100/0 67/70 47/43

5 100/100 40/50 53/67

6 100/100 60/75 75/67

7 — 58/29 32/83

The 3 major cytogenetic risk groups are unevenly distributed across the seven
signature groups. Values are the percentage of patients that have achieved complete
remission/the percentage that relapsed.

SG indicates signature group; and —, not applicable.
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generally higher survivin and GSK3 expression in AML with �5, �7
abnormalities. Survivin is a marker of poor prognosis in advanced stages
of AML.35 Survivin inhibitors might be best tested in this group
(chromosome 5 and 7 abnormalities) first. Despite having favorable
cytogenetics, many patients with inv(16) or t(8:21) relapse and die.
Differences in protein expression patterns between long-term survivors
and those that ultimately relapse may reveal the underlying differences
that result in this dichotomous outcome.

The third major observation is that the overall pattern of protein
expression can be used to classify patients into 7 signatures groups based
on the summation of expression for each of 10 separate constellations of
related protein expression. These constellations consist of proteins that
correlate most closely with each other and suggest certain phenotypes
for the cells. For example, CNSTN 9 has phospho-ERK, MEK, TP38,
and inactivating phosphorylation of BAD and GSK3, a combination of
features that promote growth and survival. Signature groups 4, 5, and
7 contain higher levels of CNSTN-8 proteins p53, MCL1, and neuropi-
lin-1. Mutations of p53 are rare inAML, occurring in approximately 5%
to 10%36 but correlate with worse outcome.37 Approximately 10% of the
samples analyzed had very strong p53, and sequencing revealed a high
rate of p53 mutation in high expressers and confirmed the worse
prognosis associated with high p53 expression38 (S. Neeley, K. A.
Baggerly, S.M.K., K.R.C., manuscript submitted). The increased expres-
sion of MCL1 is associated with therapy resistance in AML.39 High
expression of Neuropilin-1, which functions in vascular endothelial
growth factor and semaphorin receptor signaling as a mediator of
angiogenesis, has also been demonstrated to confer an adverse progno-
sis in AML,8 possibly establishing a vascular endothelial growth
factor–dependent autocrine loop that promotes survival.40 The RPPA
method thus identifies the combination of mutant p53 and high levels of
MCL1 and NRP1 as a novel adverse prognostic combination associated
with the lower remission rates, highest relapse, and worse survival. This
provides a testable hypothesis that combined therapy directed at
restoring p53 function (such as with an MDM2 antagonist),34 inhibiting
the antiapoptotic effect of MCL1 and interfering with vascular endothe-
lial growth factor signaling through NRP141 would be beneficial in
this subgroup.

In most of the SGs, the protein expression patterns of STP conform
to canonical expectations based on the established pathways. For
example, in all SGs, the levels of pAKT and pS6RPwere well correlated
with their respective known substrates GSK342 or P70S6K. Consistent
with our prior Western blot findings, we again observed that: there was
evidence of crosstalk within STP as levels of PKC�.p, AKT.p308,
MEK.p, ERK.p, and TP38.p were highly correlated within the SGs and
that patients were more likely to have no STPor multiple STPs activated
than expected (�2 � 13.07, 3 degree of freedom [df], P � .001), and
reconfirmed that STP activation was associated with a worse prognosis
(Figure S3). Some described canonical pathway activities are not
replicated in the dataset. For example,AKT is known to inactivate BAD
and prevent apoptosis by phosphorylating serine 136 or to activate
MTOR by phosphorylation. However, in this dataset when AKT.p473
and AKT.p308 is high, BAD.p136 and MTOR.p levels are low and vice
versa, suggesting noncanonical interactions. Disconnects between canoni-
cal pathways and expression levels may provide clues to deregulated
systems in leukemia cells. For example, in most SGs, high levels of
PTEN.p are associated with low levels of phospho-AKT consistent with
known models43; but in SG6, levels of AKT.p308 and .p473 are high
despite high levels of pPTEN, suggesting a failure of PTEN to regulate
phospho-AKT levels. This could represent a failed feedback loop where
the cell up-regulated phospho-PTEN in an unsuccessful attempt to
regulate phospho-AKT.43,44 Ratios of phophoprotein to total protein may
provide additional insight.45 Detailed analysis of stored material from

these cases, in combination with specific agents targeting these specific
pathways, is required to test this hypothesis.

This dataset shows the power of being able to simultaneously
ascertain the activation status of multiple pathways, with different
functional effects, within a leukemic cell, a feature not possible with any
prior method of analysis, including mRNA expression arrays. The
combination of these patterns leads to the definition of protein expres-
sion SGs with prognostic significance for remission attainment, relapse,
and survival. These SG classifications have prognostic significance that
differs depending on the associated cytogenetics, suggesting that path-
way activation must be considered in the context of the underlying
genetics of the cell. Some cohorts, for example, unfavorable cytogenet-
ics and SG6, have an unusually high CR rate and an unusually low
relapse rate, suggesting that, despite having “poor prognosis cytogenet-
ics,” patients with this signature do as well as favorable prognosis
cytogenetics patients.Adismal outcome with current therapy can also be
predicted in some groups, for example, unfavorable cytogenetics and
SG1, with a 30% CR rate and a 100% relapse rate, suggesting that these
patients should receive nontraditional therapies at presentation. Like-
wise, despite having favorable prognosis, cytogenetics patients with
SG5 and SG6 had high relapse rates. Currently, stem cell transplantation
for patients with favorable cytogenetics is reserved for those that relapse.
These data, if confirmed, would suggest that favorable prognosis
patients with these SGs should receive stem cell transplantation in first
CR. Furthermore, in an era with a rapidly increasing number of targeted
therapies, each with relatively narrow spectrum of activity, a means to
rationally select which agent to use in what molecular background is
both critical and unknown. The patterns of expression in these groups
can be used to suggest rational combinations of targeted therapies that
should be evaluated in combination with conventional therapies.

In conclusion, we were able to show the potential applicability of
proteomic profiling for AML classification, target identification, treat-
ment response prediction, and hypothesis generation for disease mecha-
nisms. The complex pattern of intracellular protein expression and
activation might harbor clues for disease pathobiology. It is possible to
classify AML based on protein expression signatures that may predict
outcome and therapy responsiveness across cytogenetics and other
disease characteristics. Thus proteomic profiling may have advantages
over other approaches of classifying AML as proteomic profiling may
provide therapeutic guidance at the same time. A major question is
whether the protein expression patterns defined from this dataset will be
validated and found to be consistent across multiple patient sample sets,
from multiple institutions, or have sufficient power to alter therapy. We
are generating a validation array with a larger number of AML samples,
which will be probed with an expanded number of antibodies to confirm
our observation. If our results hold true, this would be a first step to the
ultimate goal of personalized molecular therapy based on protein
profiling.
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