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IL17-producing (Th17) cells are a distinct
lineage of T helper cells that regulate
immunity and inflammation. The role of
antigen-presenting cells in the induction
of Th17 cells in humans remains to be
fully defined. Here, we show that human
dendritic cells (DCs) are efficient induc-
ers of Th17 cells in culture, including
antigen-specific Th17 cells. Although
most freshly isolated circulating human
Th17 cells secrete IL17 alone or with IL2,
those induced by DCs are polyfunctional

and coexpress IL17 and IFN� (Th17-1
cells). The capacity of DCs to expand
Th17-1 cells is enhanced upon DC matura-
tion, and mature DCs are superior to
monocytes for the expansion of autolo-
gous Th17 cells. In myeloma, where tu-
mors are infiltrated by DCs, Th17 cells are
enriched in the bone marrow relative to
circulation. Bone marrow from patients
with myeloma contains a higher propor-
tion of Th17-1 cells compared with the
marrow in preneoplastic gammopathy

(monoclonal gammopathy of undeter-
mined significance [MGUS]). Uptake of
apoptotic but not necrotic myeloma tu-
mor cells by DCs leads to enhanced induc-
tion of Th17-1 cells. These data demon-
strate the capacity of DCs to induce
expansion of polyfunctional IL17-producing
T cells in humans, and suggest a role for
DCs in the enrichment of Th17-1 cells
in the tumor bed. (Blood. 2008;112:
2878-2885)

Introduction

Dendritic cells (DCs) are highly differentiated antigen-presenting
cells (APCs) that play a key role in the initiation and regulation of
T-cell immunity to pathogens and tumors while at the same time
preventing immune responses against self-tissues or environmental
antigens.1 The repertoire of T cells induced upon activation
includes several types, such as T helper 1 (Th1), Th2, and Th17 as
well as regulatory T (Treg) cells, and is likely to further increase in
complexity. The balance of induction of different T-cell types is
thought to depend on cytokines and other signals derived from
APCs, which then activate specific transcription factors that
mediate the differentiation of naive T cells.2

Th17 cells are recognized as a distinct lineage of T helper cells
producing IL17, IL17F, and IL22, which play an important role in
immunity to certain pathogens and autoimmune inflammation.3-10

In view of their importance to immunopathology, several studies
have examined the factors regulating the differentiation of murine
Th17 cells.11-17 In contrast, the data about IL17 producers in
humans is somewhat limited, and some aspects of their biology
may differ from studies in mice.3,18-23 Th1 and Th17 cells were
initially viewed as distinct and possibly antagonistic differentiation
pathways.24 However, particularly in humans, a substantial propor-
tion of IL17 producers in the tissue of patients with autoimmune
disease (eg, Crohn disease, uveitis) have been found to coexpress
IFN� and IL17 (known as Th17-1 cells).23,25,26 Th17 cells coexpress-
ing IFN� have also been described in murine models of graft-versus-
host disease.27 The data about the role of Th17 cells in tumor
immunity is limited,28,29 and in this context, the heterogeneity of

IL17 producers in human tumor tissues has not been described in
detail. Recent studies have documented the capacity of murine DCs
to activate Th17 cells.30,31 However, the role of APCs in the
activation of IL17-producing cells in humans is less studied.3 In
prior studies, we have described an important role for DCs in the
activation of effector and Treg cells in the context of human
myeloma.32-34 Here, we have examined the role of DCs in the
induction of human IL17-producing cells, and the properties of
IL17 producers in patients with multiple myeloma.

Methods

Healthy donors and patients with myeloma

Peripheral blood was collected from healthy donors after informed consent was
obtained in accordance with the Declaration of Helsinki and approved by the
Institutional Review Board (IRB) at the Rockefeller University. Paired samples
of blood and bone marrow aspirates were obtained from patients with myeloma
after informed consent approved by IRB at St Vincent’s Cancer Center. Healthy
donor buffy coats purchased from the New York Blood Center (New York, NY)
were also used as a source of mononuclear cells.

Generation of monocyte-derived DCs

DCs were generated from blood monocytes as described.35 Peripheral blood
mononuclear cells (PBMCs) were obtained from healthy donor blood by
density gradient centrifugation using ficoll hypaque (Amersham Pharmacia
Biotech, Uppsala, Sweden). CD14� cells were separated from the PBMCs
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using CD14 microbeads and columns (Miltenyi Biotec, Auburn, CA). The
CD14� cells obtained from the PBMCs were cultured in RPMI with
L-glutamine (Mediatech, Herndon, VA) supplemented with 5% pooled
human serum (Labquip, Niagara Falls, NY) and used as the source of
T cells. Some of the CD14� cells were used as the source of monocytes for
T-cell stimulation. In order to generate DCs, CD14� cells were cultured in
the presence of IL4 (20 ng/mL; R&D Systems, Minneapolis, MN) and
granulocyte-macrophage colony-stimulating factor (GM-CSF; 20 ng/mL;
Immunex, Seattle, WA) in 1% plasma as described.35 On day 5 of culture,
the DCs were either left untreated (immature) or matured using the
inflammatory cytokine cocktail consisting of prostaglandin E2 (1 �g/mL;
Sigma-Aldrich, St Louis, MO), IL1� (10 ng/mL), IL-6 (1000 U/mL), and
tumor necrosis factor-� (10 ng/mL; all from R&D Systems). For some
experiments, DCs were matured using LPS (20 ng/mL; Sigma-Aldrich) or
poly I:C (25 �g/mL; InvivoGen, San Diego, CA).

DC–T-cell coculture

T cells were purified from the CD14� fraction using the pan–T-cell isolation
kit (Miltenyi Biotec, Auburn, CA). CD14� monocytes or monocyte-derived
immature DCs or DCs matured using inflammatory cytokines, LPS, or poly
I:C were used to stimulate T cells. DCs were added to the T cells at a ratio of
1:30. For some experiments, T cells were depleted of the CD45RO fraction
using magnetic beads prior to coculture. The depletion of the CD45RO�

population was monitored by flow cytometry. For some experiments,
monocyte-derived dendritic cells (Mo-DCs) were cultured with T cells in
the presence of the following neutralizing antibodies—anti-IL1b (10 �g/
mL), anti-IL6 (10 �g/mL), anti-IL23p19 (10 �g/mL; all from R&D Sys-
tems)—or the respective isotype control antibodies. For some experiments,
DCs and T cells were separated by a transwell insert (0.2 mm inserts; Nunc,
Roskilde, Denmark). In some conditions, T cells were labeled with CFSE
(carboxyfluorescein diacetate succinimidyl ester; 0.5 �M; Molecular Probes,
Eugene, OR) to monitor proliferation, prior to DC–T-cell coculture.

Intracellular flow cytometry to detect cytokine production by
T cells

Fresh PBMCs from healthy donors were stimulated with PMA (0.5 �g/mL)
and ionomycin (0.5 �g/mL) in the presence of monensin (GolgiStop; BD
Biosciences, San Jose, CA) for 5 hours. The cells were stained with the aqua
LIVE/DEAD fixable dead cell dye (Molecular Probes) to distinguish the
living cells from the dead cells. The cells were fixed and permeabillized
using the BD Cytofix/Cytoperm solution and stained with the following
antibodies: IL17-Alexa488, IL17-Alexa647 (eBioscience, San Diego, CA),
IL2-PE, IFN�-APC, IFN�-PE-Cy7, CD3-Alexa700, CD4-APC-Cy7 (all from
BD Biosciences), and CD8-PE-Texas Red (Caltag Laboratories, Burlingame,
CA). The cells were acquired using BD LSRII instrument and FACSDIVA
software (BD Biosciences). The data were analyzed using FlowJo software
(TreeStar, Ashland, OR). For some experiments, the presence of IL17 was also
analyzed in the supernatants of T-cell cultures after stimulation with PMA
ionomycin by enzyme-linked immunosorbent assay (ELISA; eBiosciences, San
Diego, CA) using the manufacturer’s recommendations.

Real-time quantitative RT-PCR

RNA was extracted from cells by using the RNeasy Mini Kit (Qiagen,
Valencia, CA). Retinoid-related orphan receptor gamma (RORC) expres-
sion was quantified by using Assays-on-Demand primer-probes from
Applied Biosystems (identification no. Hs01076112; Foster City, CA). The
reverse transcriptase–polymerase chain reaction (RT-PCR) was performed
by using EZ PCR Core Reagents (Applied Biosystems) according to the
manufacturer’s directions. The samples were amplified and quantified on an
Applied Biosystems PRISM 7700 by using the following thermal cycler
conditions: 2 minutes at 50°C; 30 minutes at 60°C; 5 minutes at 95°C; and
40 cycles of 15 seconds at 95°C followed by 60 seconds at 60°C. The
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a housekeeping
gene, was used to normalize each sample. The data were analyzed, and
samples were quantitated by the software provided with the Applied
Biosystems PRISM 7700.

Detection and expansion of Candida-specific Th17 cells

For expansion of Candida-specific Th17 cells, monocytes, or monocyte-
derived immature DCs were pulsed with Candida antigen mix (20 ng/mL;
Greer Labs, Lenoir, NC). After 4 hours, the immature DCs were matured
using inflammatory cytokine cocktail as described above. The monocytes
and the DCs were cultured with the Candida mix for 24 hours prior to being
used to stimulate T cells. Pan–T-selected T cells were labeled with CFSE
(0.5 �M CFSE; Molecular Probes) and cultured alone, in the presence of
20 �g/mL of Candida mix, with monocytes and cytokine-matured DCs
alone as well as monocytes and cytokine-matured DCs loaded with Candida
antigen mix. After 5 days of coculture, some of the T cells were stimulated
with PMA and ionomycin for 5 hours with GolgiStop and cytokine
production was measured by flow cytometry as described previously. IL-2
(50 U/mL) was added to the rest of the cultures. After 7 more days in
culture, intracellular cytokine staining was performed after stimulation with
PMA and ionomycin to analyze the expansion of antigen specific T cells by
flow cytometry. To examine the antigen specificity of the proliferating
T cells, in some experiments, the cocultured T cells were stimulated
overnight with either DCs alone or DCs loaded with candida antigen mix in
the presence of GolgiStop, and intracellular cytokine staining was per-
formed as described previously.

Stimulation with tumor-loaded DCs

For some experiments, DCs were loaded with dying myeloma tumor cells
prior to coculture. Multiple myeloma (MM) cell lines (U266 cells from
ATCC [Manassas, VA] and OPM2 cells kindly provided by J. Shaughnessy
[Little Rock, AR] were killed with �-irradiation (apoptotic cells) or
freeze-thaw (necrotic cells) as described,32 and fed to immature DCs at a
DC-tumor ratio of 1:1. Tumor-loaded DCs were then used to stimulate
autologous T cells, as described earlier.32 After 5 days of culture, the
presence of IL17-producing T cells was monitored by flow cytometry after
stimulation with PMA/ionomycin, as described earlier.

Results

Phenotype of freshly isolated circulating human
IL17-producing T cells

Current data about the polyfunctionality of IL17 producers in
humans is limited.23,25 Therefore, we first analyzed the frequency of
T cells in healthy donor PBMCs (n � 20) producing IL17, IFN�,
and IL2 in response to stimulation with PMA and ionomycin. The
proportion of IL17-producing T cells was variable (mean � SD
0.3% � 0.3% of PBMCs; Figure S1A, available on the Blood
website; see the Supplemental Materials link at the top of the online
article). The majority of IL17-producing T cells were CD4� T cells,
consistent with prior studies (Figure S1B). Most of the circulating
Th17 cells secreted either IL17 alone, or with IL2, with only 8%
(� 3.5%) cells coexpressing both IL17 and IFN�, known as
Th17-1 cells (Figure S1C). Therefore, although the frequency of
circulating human Th17 cells is variable between individuals, in
most healthy individuals only a small proportion of circulating
Th17 cells are Th17-1 cells.

DC-mediated expansion of Th17 cells

Next, we analyzed the capacity of monocyte-derived DCs to
expand human Th17 cells in culture. T cells were cultured with
either autologous immature DCs, DCs matured using inflammatory
cytokines, or Toll receptor ligands (LPS or poly-IC). After 5 days,
some of the cultured cells were analyzed for the presence of Th17
cells. Exogenous IL2 was added to the remainder of the cultures,
which were reassayed 7 days later. The capacity of DCs to activate
IL17-producing T cells was linked to their maturation status and

DENDRITIC CELL–MEDIATED Th17 CELLS IN MYELOMA 2879BLOOD, 1 OCTOBER 2008 � VOLUME 112, NUMBER 7

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/112/7/2878/1302939/zh801908002878.pdf by guest on 02 June 2024



was evident within 5 days of culture (Figure 1A,B). The capacity of
mature DCs to mediate greater expansion of Th17 cells than
immature DCs was also evident after another week of culture in the
presence of IL2 (Figure 1C). Importantly, a substantial proportion
of Th17 cells expanded with DCs were polyfunctional and secreted
IFN� in addition to IL17 and IL2 (Figure 1A,B). The degree of
Th17-1 induction with different maturation stimuli tested was
comparable, but always superior to immature DCs (Figure 1A,B).
DC-mediated expansion of IL17-producing T cells was also
verified by measuring the expression of Th17-polarizing transcrip-
tion factor RORC by TaqMan (Figure 1D) and the presence of IL17
by ELISA (Figure 1E). In a prior study, it was suggested that human
DCs could expand Th17 cells only from CD45RO� T cells.26

However, we could also observe expansion of Th17 cells using
CD45RO-depleted cells as a starting population (Figure S2).
Therefore, mature DCs are efficient APCs for the induction of
human Th17-1 cells.

DCs are superior to monocytes for the expansion of Th17 cells

Prior studies have suggested that monocytes are effective APCs for
expansion of human Th17 cells in culture.20,22 However, these
studies tested expansion of allogeneic lymphocytes in the presence
of anti-CD3 beads. In order to compare the capacity of different

APCs to stimulate autologous IL17 producers, we monitored the
expansion of Th17 cells in culture after stimulation with monocytes
versus cytokine-matured DCs. Cultures were examined for the
presence of Th17 cells after 5 days of coculture as well as at day 12
in the presence of IL2. Under these conditions, DCs were superior
to monocytes both for the expansion of IL17-producing cells in
culture, and the induction of polyfunctional Th17 cells (Figure 2).

Mechanism of DC-mediated expansion of Th17 cells

The capacity of DCs to expand Th17 cells depends on cell-cell
contact (or short-range interactions), as cocultures in transwells
abrogated both the expansion of Th17 cells as well as the induction
of polyfunctional Th17-1 cells (Figure 3A; data not shown). The
addition of blocking antibodies against IL1�, IL6, and IL23 also
led to partial inhibition of the induction of Th17 cells (Figure 3B).
Cytokine neutralization inhibited the induction of both single-
positive and polyfunctional Th17 cells (data not shown). Therefore,
DC-mediated expansion of Th17 cells under these conditions was
cell-contact dependent and partly dependent on polarizing cytokines.

Expansion of antigen-specific Th17 cells

Recent studies have shown that a significant proportion of human
Candida-specific T cells consists of Th17 cells.21 Therefore, we
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Figure 1. DC-mediated activation of human IL17-producing T cells. T cells were culture alone (T alone) or with immature DCs (T � IDC), cytokine-matured DCs (T � Cyt
DC), lypopolyscharide-matured DCs (T � LPS DC) or poly I:C–matured DCs (T � PIC DC). At 5 days later, the T cells were examined for the production of IL17 using
PMA/ionomycin in the presence of GolgiStop for 5 hours. The cells were labeled with aqua LIVE/DEAD dye to distinguish dead cells, fixed, permeabilized, and simultaneously
stained for the presence of IL17, IL2, and IFN�. (A) Representative plot from one of the experiments showing the frequency of the IL17 � T cells in the cultures (top panel).
Middle panel shows the phenotype of IL17-producing cells (data gated on CD3� T cells). Bottom panel shows the cytokine profile of the IL17-producing cells in the various
conditions. Data gated on CD3�IL17� cells and analyzed for the expression of IL2 and IFN�. The numbers represent the percentage of Th17 cells expressing IL17 alone or with
IL2 or IFN�. (B) Panel on the left is a bar graph showing the percentage of IL17 cells that make IL17 with or without IFN�. Panel on the right shows the percentage of IL17 cells
that make IL17 with or without IL2. The graphs represent data from 7 different healthy donors. *P 	 .05 when compared with T cells alone. **P 	 .05 when compared with
T cells alone as well as T cells cultured with immature DCs. (C) Expansion of IL17-producing T cells by DCs. T cells were cultured with DCs as above for 5 days. After 5 days,
IL2 was added to the DC–T-cell cocultures, and the T cells were cultured for an additional 7 days. On day 12 of culture, the T cells were stimulated with PMA and ionomycin to
assess the frequency of IL17-producing T cells. Figure shows frequency of IL17-producing cells after coculture with cytokine-matured as well as LPS- and poly I:C–matured
DCs. (D) T cells cultured alone (T alone) and those from cocultures with Cyt-DCs as in panel C were stimulated with PMA/ionomycin for 5 hours, and the expression of RORC
was analyzed by TaqMan. (E) T cells cultured alone (T alone) and those from cocultures with Cyt-DCs as in panel C were stimulated with PMA/ionomycin for 5 hours, and
supernatants were assayed for the presence of IL17 by ELISA. Error bars in panels D and E indicate SD.

2880 DHODAPKAR et al BLOOD, 1 OCTOBER 2008 � VOLUME 112, NUMBER 7

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/112/7/2878/1302939/zh801908002878.pdf by guest on 02 June 2024



examined the capacity of inflammatory cytokine matured DCs
(Cyt-DCs) loaded with Candida antigen to expand Th17 cells in
culture (Figure 4). Antigen-specific proliferation was monitored

with dilution of CFSE. After 5 days of culture, proliferation of
Candida-specific IL17 producers could be detected in response to
Candida-pulsed Cyt-DCs. The expansion of Candida-specific Th17
cells on day 5 of culture in response to Cyt-DCs was superior to
that with monocytes (Figure 4A). Here again, the proliferating
IL17-producing T cells were polyfunctional, and secreted IFN� or
IL2 in addition to IL17 (data not shown). Upon further culture for
another week in the presence of IL2, the capacity of Candida-
pulsed monocytes to expand Th17 cells could also be demon-
strated, consistent with other studies (data not shown). In order to
further analyze the antigen specificity of Th17 cells expanded using
DCs, the T-cell cultures were restimulated with unpulsed or
Candida-pulsed DCs (Figure 4B). Expansion of Candida-specific
Th17-1 cells could be clearly demonstrated in these cultures.

Frequency and phenotype of Th17 cells in patients with
myeloma

Most studies of human Th17 cells to date have focused on patients
with autoimmunity. In order to analyze the proportion of Th17 cells
in the setting of human cancer, we analyzed these cells in paired
samples from the blood and marrow of patients with plasma cell
dyscrasias. Clinical features of patients studied are shown in Table
1. Overall, the proportion of Th17 cells in the bone marrow of
patients was higher than the corresponding frequencies of these
cells in the blood (Figure 5A). Functional properties of Th17 cells
in the marrow were different from those in the blood. Bone marrow
IL17 producers in the myeloma marrow contained a significantly
higher proportion of polyfunctional Th17-1 cells than those in
circulation (Figure 5B). This enrichment of Th17-1 cells was
specific for MM, and not observed in the bone marrow from
monoclonal gammopathy of undetermined significance (MGUS;
Figure 5B,C). Consistent with this, the proportion of Th17-1 cells
was higher in patients with lytic bone disease (Figure 5D).
Therefore IL17 producers in the myeloma marrow are enriched for
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polyfunctional Th17-1 cells, similar to the phenotype of cells
induced by DCs.

Expansion of Th17 cells by DCs loaded with dying tumor cells

Prior studies have shown that the tumor bed in myeloma is highly
enriched in DCs. Relative enrichment of Th17-1 cells in the tumor
bed suggested that interactions between tumor cells and DCs may
contribute to the observed phenotype of IL17 producers. Several
studies have documented an increase in several inflammatory
cytokines, including IL6, IL1, and TNF in MM.36 As noted earlier,

we have shown that culture of DCs with these inflammatory
cytokines indeed enhances their capacity to activate Th17-1 cells.
Effect of dying cells on DC-mediated antigen presentation is an
area of investigation in several labs, but has focused largely on the
induction of effector and regulatory T cells.33,34,37 We hypothesized
that the uptake of dying tumor cells by tumor-infiltrating DCs
might also impact DC-mediated induction of Th17-1 cells, in
addition to the effect of inflammatory cytokines. To test this further,
we loaded DCs with apoptotic or necrotic tumor cells and analyzed
the induction of IL17 producers. DCs loaded with apoptotic tumor
cells led to greater expansion of Th17-1 cells than unloaded DCs
(Figure 6A,B). Interestingly, this was not observed with DCs
loaded with necrotic cells. Thus, uptake of dying tumor cells by
DCs in the tumor bed may also contribute to the observed
enrichment of Th17-1 cells in the tumor bed. Together, these
studies suggest that the mode of tumor cell death (apoptosis versus
necrosis) has an impact on the ability of tumor-loaded DCs to
induce Th17 cells.

Discussion

These data demonstrate that human monocyte-derived mature DCs
are effective APCs for the induction of IL17-producing T cells,
including antigen-specific Th17 cells in culture. Th17 cells have
been implicated in the regulation of autoimmune reactions as well
as host defense against pathogens such as Candida, and against
tumors.3,4,38 DCs are currently under active clinical evaluation as
adjuvants for immune therapy, as well as tools for ex vivo
expansion of T cells for adoptive therapy.39 Therefore, the capacity
of DCs to induce antigen-specific Th17 cells has obvious implica-
tions for optimally harnessing their properties against pathogens
and tumors in the clinic.

An important aspect of DC-mediated expansion of IL17-
producing T cells is the expansion of polyfunctional Th17 cells that
coexpress IFN� and/or IL2 and IL17. Th1 and Th17 cells have
been typically viewed as antagonistic lineages, particularly in the
mouse.24 This may be in part because transcription factors that
drive the differentiation of murine Th1 or Th17 lineages (Tbet or
ROR�t, respectively) also inhibit the differentiation along the other
pathway.40,41 However, T cells that coexpress both IFN� and IL17
(Th17-1 cells) are quite prominent in the involved tissue in
autoimmunity such as Crohn disease,23 and as shown here, in the
tumor bed in human myeloma. Although such Th17-1 cells may
also be observed in the mouse, the proportion of these cells may be
higher in humans. Further studies are needed to better understand
the biology of human Th17-1 cells, particularly in the tumor
microenvironment.
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Figure 4. Expansion of antigen-specific Th17 cells by DCs. (A) Comparison of
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CFSE-labeled T cells were cultured alone (T cells), or cocultured with cytokine-
matured DCs (T cells � Cyt DC) or monocytes (T cells � Mono) with or without
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5 similar experiments. (B) T cells from cultures expanded using Candida-loaded
Cyt-DCs as in panel A were restimulated with unpulsed DCs or Candida-loaded DCs.
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Table 1. Patient characteristics

P1 P2 P3 P4 P5 P6 P7 P8

Age, y 76 67 62 60 55 60 62 66

Sex Female Female Male Male Male Male Male Male

Diagnosis MGUS MGUS MGUS MGUS Myeloma Myeloma Myeloma Myeloma

IgH type (M protein) IgG IgG IgG IgG IgG IgG IgG IgA

IgL type (M protein) Lambda Lambda Kappa Kappa Kappa Kappa Kappa Kappa

Marrow plasma cells, % 4 8 7 5-7 13 25 15 45

Cytogenetics Negative Negative Hyperdiploid ND Negative ND ND ND

Bone disease No No No No Yes Yes No Yes

Prior therapy No No No No No No No 1 cycle

ND indicates not determined.
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The capacity of DCs to expand Th17 cells was linked to their
activation status, and DCs matured with inflammatory cytokine
cocktail led to greater expansion than immature DCs. Typically,
the role of Th17-polarizing cytokines (eg, IL6) has been studied
in terms of activation of critical transcription factors (eg,
STAT3) in T cells.12,13,42 However, our data suggest that these
cytokines may also help Th17 induction via activation of DCs.
Inflammatory cytokines (eg, TNF) have also been shown to
enhance the Th17-inducing capacity of monocytes.43 Recent
studies have shown that bacterial peptidoglycan can prime
human monocyte-derived DCs (in the presence of SEB) to
mediate expansion of Th17 cells.26 It has been suggested that
LPS-activated allogeneic monocytes, in the presence of anti-
CD3, were efficient APCs for expansion of Th17 cells and
superior to Mo-DCs.20,22 In contrast, we tested stimulation of
autologous T cells without anti-CD3 beads or SEB. Under these
conditions, mature DCs were more efficient for the induction of
IL17 producers, particularly the Th17-1 cells.

In view of the link between chronic inflammation and cancer,
Th17 cells may also play a role in regulating host defense against
cancer. We find that in contrast to circulating Th17 cells, the IL17
producers in the marrow bed of patients with MM are predomi-
nantly polyfunctional Th17-1 cells. This was not seen in the
marrow of patients with MGUS. Recently, serum levels of IL17
were shown to be elevated in patients with myeloma, which is
consistent with our studies.44 IL17-producing cells can in principle
contribute to myeloma pathology in several ways. For example,
IL17 has been shown to have strong proangiogenic effects, and the
elevated levels of IL17 in myeloma were correlated with elevated
levels of angiogenic cytokines.44,45 IL17 has also been shown to be
a potent osteoclastogenic factor,46,47 and therefore polyfunctional

IL17 producers may also play a role in myeloma bone disease.
Interestingly, both IL17 and IFN� (as secreted by these polyfunc-
tional cells) were recently shown to synergize in the induction of
giant cell formation and inducing fusion of DCs.48,49 DC fusion has
been implicated in the formation of osteoclasts in an inflammatory
setting,50 and may well contribute to osteoclastogenesis in MM.
IL17 can also induce the secretion of cytokines such as IL6 from
stromal cells,45 which may promote myeloma growth. Therefore,
our finding that Th17-1 cells are increased in the bone marrow in
myeloma compared with MGUS is consistent with both the
angiogenic and osteoclastogenic switch observed at this transition.
Importantly, these data emphasize the need to directly study the
T cells from the tumor bed in patients as opposed to those in
circulation.33,51,52

Prior studies have shown that myeloma tumor bed is heavily
infiltrated by DCs,53-56 which, as shown here, are the most
efficient inducers of human Th17-1 cells. These data support a
model in which Th17 cells are recruited to the tumor bed by
Th17-attracting chemokines (eg, CCL20, recently shown to be
enriched in the myeloma tumor bed)57 and activated to a Th17-1
phenotype locally by tumor-infiltrating DCs. The capacity of
DCs to induce Th17-1 cells may be further enhanced by the
uptake of apoptotic tumor cells, as well as inflammatory
cytokines (eg, IL1, IL6, TNF)58 in the tumor bed. It is also
possible that additional stimuli implicated in the induction of
Th17 cells, such as pathogens,45 are present in the myeloma
marrow, but these remain to be identified.

The finding that uptake of apoptotic but not necrotic tumor cells
leads to enhanced induction of Th17-1 cells is of particular interest
because altered clearance of apoptotic cells has already been linked
to autoimmunity.59 These studies therefore provide a link between
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the clearance of dying cells and induction of Th17 cells in
autoimmunity. The mechanistic basis of enhanced Th17 induction
by apoptotic but not necrotic cells need further study, but may
relate to altered signaling of IL12-related cytokines in response to
uptake of apoptotic cells.60,61

In summary, we have shown that human DCs are efficient APCs
for the induction of polyfunctional Th17-1 cells, and that such cells
are the dominant population of IL17 producers in the tumor bed in
human myeloma. DCs may therefore be efficient tools for the
activation of antigen-specific Th17-1 cells in the clinic. It is
notable, however, that at present, data from preclinical models are
somewhat conflicting regarding whether IL17-producing T cells
(or the IL23-IL17 axis) is beneficial or harmful in the context of
immunity to pathogens (eg, Candida)30,62,63 or tumors.64-67 One
possibility is that the biologic effects of Th17 cells may depend on
the distinct subset of Th17 cells, which in turn may depend on the
nature of APCs eliciting the response. Targeting the induction of
Th17-1 cells may also be valuable in the context of autoimmu-
nity.68 The capacity of human DCs to induce these cells as shown
here makes them attractive targets for the manipulation of this
pathway in the clinic.
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