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To the editor:

Heparan sulfate proteoglycans, Fc receptors, and DC suppression

In their recent article in Blood,1 You et al hypothesized on the
mechanism by which decoy receptor 3 (DcR3), a member of the
tumor necrosis factor receptor family (TNF-R), could promote
tumor growth in patients with cancer. They reported that DcR3
induces apoptosis of dendritic cells (DCs) by binding to their
heparan sulfate proteoglycans (HSPG). They argued that the
ensuing immune suppression would explain why high levels of
DcR3 are associated with reduced survival in cancer patients. This
effect of DcR3 was shown by using a recombinant form of DcR3
fused to the Fc portion of human IgG1 (DcR3-Fc). However, it is
known that the Ig moiety of fusion proteins bind Fc receptors
(FcR).2 Because DCs express high-affinity FcR3 that can produce a
strong signal into cells,4 the results from You et al do not establish
that, without this Ig-FcR interaction, the binding of DcR3 to HSPG
is sufficient to induce DC apoptosis. As a consequence, it is not
known whether the native form of DcR3 can be held responsible
for reduced survival of cancer patients by inducing apoptosis in
DCs or, alternatively, by its decoy activity on proapoptotic
molecules such as Fas ligand.5

Using another member of the TNF-R family, the transmem-
brane activator, calcium modulator, and cyclophilin ligand
interactor (TACI)–Fc, we observed a similar inhibition of DC
generation from peripheral blood monocytes (Figure 1A top) as
reported by You et al with DcR3-Fc.1,6 It is noteworthy that
TACI, like DcR3, has an HSPG-binding domain.7 By contrast,
B-cell maturation antigen (BCMA)–Fc that binds the same
ligands as TACI-Fc but has no HSPG binding domain7 and
control IgG1 did not affect DC generation. Such inhibition of
DC generation was also observed with a member of the TNF
family, a proliferation-inducing ligand (APRIL) also bearing an
HSPG binding domain8 fused to the same Fc of IgG1 (Fc-
APRIL; Figure 1A bottom). A mutant of the latter molecule
without its HSPG binding domain, Fc-APRILH98,8 or the wild-
type molecule oligomerized by a non-Ig moiety, the collagen
domain of adiponectin, ACRP-APRIL,9 failed to inhibit DC
generation in spite of binding to DC very efficiently (Figure 1B).
Hence, binding to HSPG is essential, but an additional interac-
tion with FcR is prerequisite to affect DCs.

The finding that simultaneous cross-linking of FcR and HSPG
and/or bridging FcR and HSPG eliminates DCs and may cause
immune suppression is of great interest. Indeed, any protein
carrying an HSPG-binding domain fused to a Fc portion of IgG
may achieve immunosuppression. Such immunosuppression is
likely to constitute an advantage in the ongoing clinical trial with
TACI-Fc in autoimmune disorders.10
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Figure 1. HSPG and FcR cross-linking impair DC generation. (A) Peripheral
blood monocytes were cultured in GMCSF/IL-4 in the presence of 10 �g/mL of the
indicated reagents. After 6 days, the number of viable DCs in the culture was
assessed by dye exclusion; 100% was arbitrarily defined as the number of DCs
recovered from culture with medium alone. Error bars represent SD. (B) Binding of
10 �g/mL ACRP-APRIL on monocyte-derived DCs. ACRP alone served as a
negative control.
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Decoy receptor 3 (DcR3), a pleiotropic immunomodulator

Roosneck et al speculated that “any protein carrying an HSPG
binding domain fused to the Fc portion of IgG may achieve
immunosuppression” based on their observation of the inhibitory
effects of TACI-Fc versus BCMA-Fc, and Fc-APRIL versus its
mutants Fc-APRIL-H98 and ACRP.Fc. They also speculated that
this feature is likely to constitute an advantage to use TACI-Fc in
autoimmune disorders. The first speculation is in accord with our
observation that HBD.Fc, the recombinant protein comprising the
heparan sulfate-binding domain (HBD) of DcR3 and Fc portion of
human IgG1, functions as DcR3.Fc does to induce dendritic cell
(DC) apoptosis.1 However, more experiments are needed to
consolidate this argument, such as using recombinant proteins
comprising the consensus sequences of HBD fused with IgG1.Fc to
compare their effects with DcR3.Fc and HBD.Fc to induce DC
apoptosis,1 modulate the differentiation and activation of DC and
macrophage,2,3 activate PKC-delta,1,4 and enhance osteoclast differ-
entiation.5 These experiments will provide information to support,
or against, their second speculation.

No doubt oligomerized DcR3 is more potent than monomeric
DcR3,3 and DcR3 fused with Fc or another tag might enhance
DcR3 activity by increasing stability, dimerization, or oligomeriza-
tion. However, endogenous DcR3 without Fc still has effects
similar to DcR3.Fc because the modulatory effects of DcR3.Fc are
also observed in transgenic mice overexpressing DcR3.6,7 Recently,
we further demonstrated that DcR3.Fc is able to down-regulate the
expression of the master regulator of MHC-II expression (CIITA)
in tumor-associated macrophages (TAM) in vitro, and this is
confirmed in the TAMs derived from transgenic mice and cancer
patients with up-regulated DcR3.8 Therefore, like APRIL,9 endoge-
nous DcR3 might be able to bind to extracellular matrix or to
proteoglycan-positive cells to induce oligomerization, and is as
potent as, or similar to, DcR3.Fc.

In addition to interacting with proteoglycan, DcR3 also interacts and
neutralizes the functions of 3 members of the tumor necrosis factor
(TNF) superfamily: Fas ligand (FasL),10 LIGHT,11 and TL1A.12 Previ-
ous studies have shown that DcR3 inhibits FasL-mediated apoptosis7

and enhance angiogenesis via neutralizing TL1A in vivo.13 Therefore,
the newly identified action in DC apoptosis is one of the pleiotropic
effects of DcR3 to promote tumor growth.

Several reports have shown that higher serum level of DcR3
correlates with poor prognosis of cancer patients,8,14-16 and the
presence of DcR3 correlates with resistance to 5-fluorouracil–
based adjuvant chemotherapy.17 Therefore, serum level of DcR3 is

not only a useful marker to predict cancer prognosis, but is also an
important parameter to predict tumor resistance to certain
chemotherapy.
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