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Abnormalities in the myeloid progenitor compartment in Down syndrome fetal
liver precede acquisition of GATA I mutations
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Down syndrome (DS) children have a high
frequency of acute megakaryoblastic leu-
kemia (AMKL) in early childhood. At least
2 in utero genetic events are required,
although not sufficient, for DS-AMKL: tri-
somy 21 (T21) and N-terminal-truncating
GATA1 mutations. To investigate the role
of T21 in DS-AMKL, we compared second
trimester hemopoiesis in DS without
GATA1 mutations to gestation-matched
normal controls. In all DS fetal livers
(FLs), but not marrows, megakaryocyte-

erythroid progenitor frequency was in-
creased (55.9% * 4% vs 17.1% = 3%,
CD34+CD38* cells; P < .001) with com-
mon myeloid progenitors (19.6% = 2% vs
44.0% * 7%) and granulocyte-monocyte
(GM) progenitors (15.8% = 4% vs
34.5% * 9%) commensurately reduced.
Clonogenicity of DS-FL versus normal FL
CD34* cells was markedly increased
(78% = 7% vs 15% = 3%) affecting
megakaryocyte-erythroid (~ 7-fold
higher) and GM and colony-forming

unit—-granulocyte, erythrocyte macro-
phage, megakaryocyte (CFU-GEMM) pro-
genitors. Replating efficiency of CFU-
GEMM was also markedly increased.
These data indicate that T21 itself pro-
foundly disturbs FL hemopoiesis and
they provide a testable hypothesis to
explain the increased susceptibility to
GATA1 mutations in DS-AMKL and DS-
associated transient myeloproliferative
disorder. (Blood. 2008;112:4507-4511)

Introduction

Children with Down syndrome (DS) have a uniquely high fre-
quency of acute megakaryoblastic leukemia (AMKL) in early
childhood.!-3 The leukemic cells acquire mutations in utero in the
critical megakaryocyte transcription factor GATA1.*1° In many DS
children, the first manifestation is neonatal transient myeloprolifera-
tive disorder (TMD),!2 which evolves to AMKL in 20% to 30% of
infants.> TMD and AMKL represent 2 distinct steps in the
pathogenesis of DS-AMKL. However, an additional necessary
leukemogenic event (most probably the initiating event) is trisomy
21 (T21). T21 is essential for GATAl-associated TMD and
AMKL>!L12; truncating GATAI mutations in the absence of T21
are not leukemogenic.!* GATAI mutations also occur at high
frequency in T21 (~5% of all DS neonates'¥) and 25% of
DS-associated AMKL patients have multiple, independent clones
with GATAI mutations.® These data suggest that GATAI mutations
and T21 specifically synergize to generate preleukemic TMD. The
cellular and molecular mechanisms by which this occur are unclear.
That a putative leukemia-initiating cell is present in T21 fetal
liver (FL) is suggested both by the natural history of TMD
(origin in utero, frequent liver involvement, and spontaneous
resolution as FL hemopoiesis ceases!’"!%) and by analysis of
germline N-terminal mutant Gatal phenotypes in mouse and
humans.'® To investigate the impact of T21, independent of
GATAI mutations, on human hemopoiesis, we studied myeloid
progenitors from second trimester T21 FL and bone marrow.

Methods

Second-trimester FLs and marrow collected during elective surgical
termination of pregnancy were processed immediately as previously
described.!” The study was approved by Hammersmith and Queen
Charlotte’s Hospitals Research Ethics Committee; written informed
consent was obtained in accordance with the Declaration of Helsinki.
CD347" cell separation, flow cytometry, clonogenic assays, liquid
cultures, GATA I mutation analysis, and gene expression were performed
on freshly isolated cells using standard methods (Document SI,
available on the Blood website; see the Supplemental Materials link at
the top of the online article).

Results and discussion

To investigate whether fetal hemopoiesis was perturbed in DS, we
analyzed the myeloid progenitor compartment in freshly isolated
FL mononuclear cells (MNCs) with T21 with no GATA I mutations.
There was no significant difference in percentage of CD34 " cells in
DS (n = 10; median gestation, 15 weeks) versus normal FL (n = 5;
median gestation, 16 weeks) MNC samples (mean = SEM,
31% = 0.8% vs 49% = 0.9%; P = .2). However, the CD34"
CD38" compartment showed a strikingly increased frequency of
megakaryocyte-erythroid progenitors (MEPs) in DS-FL compared
with normal FL (55.9% * 4% vs 17.1% * 3% of CD34"CD38"
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Figure 1. Myeloid progenitors in second trimester liver and bone marrow from DS and normal gestation-matched fetuses. MEPs, CMPs, and GMPs were analyzed by
flow cytometry of freshly isolated fetal liver (FL) mononuclear cells (MNCs) (n = 10 with DS and n = 5 normal) and fetal bone marrow MNCs (n = 4 with DS and n = 4 normal).
The gating strategy used to identify the MEP compartment, defined as CD34+*CD38*CD123-CD45RA", is shown in panel A, representative plots show the proportion of MEPs
significantly higher in DS-FL compared with normal FL (P < .001), whereas the proportions of CMPs (P = .002) and GMPs (P = .025) were significantly reduced (Biv). There
were no significant differences between the frequency of MEPs, CMPs, and GMPs between DS and normal fetal bone marrow (Ciii). Data are means plus or minus SEM.
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Figure 2. Clonogenic assays, liquid cultures, and gene expression of CD34+ cells from DS and normal FL. (A-C) CD34" cells purified from freshly isolated MNCs from
DS (n =5) and gestation-matched normal (n = 4) FLs were plated at 500 to 1000 cells/well with interleukin-3 (IL-3), IL-6, IL-11, stem cell factor, FIt3 ligand,
granulocyte-macrophage colony-stimulating factor, Tpo, and Epo and counted after 12 to 14 days. (A) Cloning efficiency of DS-FL CD34* cells was higher than normal FL
CD34* cells (78 = 7 vs 15 = 3). (B) Absolute numbers of all myeloid progenitors were increased in DS-FL compared with normal FL: erythroid (198 + 2 vs 30 + 5
colonies/5 X 102 cells; P < .001), megakaryocyte/megakaryocyte-erythroid (60 + 6 vs 5 + 2.6 colonies/5 X 102 CD34* cells; P < .001), CFU-GEMM (57 + 4 vs 10 + 0.5;
P < .001), and CFU-G/GM/M (98 + 6 vs 29 + 1; P < .001). (C) Serial replating of individual CFU-GEMM from DS-FL (n = 3) showed markedly increased replating efficiency
compared with normal FL CFU-GEMM (n = 3): secondary replating of normal FL CFU-GEMM produced only occasional CFU-e with no tertiary replating ability, whereas
secondary replating of DS-FL CFU-GEMM produced tertiary CFU-GEMM and erythroid colonies (BFU-e and CFU-e) and tertiary replating of DS-FL secondary CFU-GEMM
gave rise to CFU-e, which had no replating ability. (D) Erythroid liquid cultures: MACS-purified DS-FL (n = 5) and normal gestation-matched FL CD34 " cells (n = 3) cultured
with Epo, stem cell factor, FIt3 ligand, and IL-3 generated similar numbers of GlyA* cells after 7 and 10 days of culture (inset: flow cytometry of total cells after 10 days of
culture). (E) Megakaryocyte liquid cultures: MACS-purified DS-FL CD34 " cells (n = 5) cultured with Tpo generated a slightly higher total number of cells compared with normal
FL CD34* cells (n = 3) after 10 days (P = .07) with a similar proportion of CD61* cells and morphologically normal megakaryocytes (inset: flow cytometry of total cells and
cytospin of megakaryocytes after 10 days of culture). (F) Expression of full-length GATA1, truncated GATA1 (GATA1s), RUNX1, and GATA2 transcripts by FL CD34* cells in
T21 (n = 3) and normal (n = 3) FL was measured by Tagman quantitative reverse-transcribed polymerase chain reaction in 3 independent experiments, each comparing a T21
with a normal sample. Expression levels in each of the T21 samples normalized against a normal FL sample is shown.
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cells; P < .001), whereas common myeloid progenitors (CMPs;
19.6% = 2% vs 44.0% = 7%; P = .002) and granulocyte-mono-
cyte progenitors (GMPs; 15.8% = 4% vs 34.5% = 9%; P = .025)
were correspondingly lower (Figure 1A,B). To determine whether
these differences were specific to FL, we analyzed marrow from
DS fetuses (n = 4) without GATAI mutations, which showed
normal MEP frequency (13.2% = 0.1%) compared with gestation-
matched controls (14.7% = 2%; n = 4; Figure 1C), although it is
possible that differences between DS and normal marrow may not
become apparent until later gestations.

Therefore, we investigated whether FL megakaryocyte-
erythroid compartment expansion was cell-intrinsic, rather than
secondary to DS-FL microenvironment differences, by performing
clonogenic assays on purified CD34% cells. Clonogenicity of
DS-FL CD34* cells was markedly increased compared with
normal FL (78% = 7% vs 15% * 3%; Figure 2A), affecting not
only megakaryocyte, megakaryocyte-erythroid, and erythroid pro-
genitors, which together were approximately 7-fold higher in
DS-FL versus normal FL, but also CFU-GEMM and G/GM/M
progenitors, consistent with cell-intrinsic abnormalities of the
DS-FL CD34" compartment (Figure 2B). This was supported by
markedly increased replating efficiency of individual CFU-GEMM
from DS-FL versus normal FL. CFU-GEMM (Figure 2C) indicative
of increased self-renewal.

To further investigate growth and maturation of DS-FL progenitors,
DS-FL (n = 5) and gestation-matched normal FL. CD34" cells (n = 3)
were cultured in erythroid and megakaryocyte liquid cultures. DS-FL
CD347 cells proliferated and differentiated normally with erythropoi-
etin (Epo) (similar numbers of GlyA™ cells) (Figure 2D). In thrombopoi-
etin (Tpo)—containing cultures, DS-FL CD34* cells generated slightly
higher total and CD617 cell numbers compared with normal FL. CD34*
cells (P = .07), but cultured megakaryocytes appeared morphologically
normal (Figure 2E) and no gross differences in proplatelet formation
were noted on light microscopy (data not shown). Nevertheless, defects
in late megakaryocyte maturation may be present because, despite
increased megakaryocyte progenitors, DS fetal blood (n = 4) showed
low/low normal platelets vs normal fetuses, and abnormal/giant platelets
were seen on all DS fetal blood smears (Figure S1) consistent with
results in DS neonates.'®1 Thus, further studies are warranted.

To exclude expansion of occult mutant GATA [ clones in DS-FL,
GATAI mutational analysis was performed on DNA from DS-FL
CD34" cells from all samples, from individual hemopoietic
colonies and DS-FL CD34" cells in megakaryocyte and erythroid
liquid cultures. No GATAI mutations were detected. In addition,
CD34" cells from DS-FL and normal FL expressed both full-length
GATA1 and GATAls mRNA (Figure 2F), consistent with the
hypothesis that perturbation of FL hemopoiesis is directly the result
of T21 rather than occult mutant GATA! clones. This is supported
by the observation that hemopoietic abnormalities were seen in
every DS-FL rather than a subset. The abnormal FL CD34*
compartment, and increased megakaryocyte-erythroid progenitors
in particular, probably provides a T21-dependent cellular substrate
uniquely sensitive to the growth-promoting effects of GATAI
mutation(s), which would not be leukemogenic in the absence of
T21.13 The absence of a similarly abnormal progenitor population
in DS fetal marrow provides one possible explanation for a
fetal-specific window for initiation of TMD and DS-AMKL.
Further work is needed to investigate the role of FL and marrow
microenvironments and the nature of any intrinsic difference in DS
FL versus marrow CD34% cells.

The mechanism(s) by which T21 perturbs FL hemopoiesis is
(are) not clear. Several chromosome 21 candidate genes involved in
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megakaryocyte differentiation and/or leukemogenesis have been
investigated in DS-AMKL and TMD, including ERG and
RUNX1.7-22 Because RUNX1 is crucial in embryonic/fetal hemo-
poiesis and megakaryocyte maturation and RUNX/ mutations are
frequent in non-DS myeloid leukemias,?® we measured RUNX1
expression in DS-FL CD34™* cells (n = 3) by quantitative reverse-
transcribed polymerase chain reaction and found a 1.5- to 2-fold
increase in expression compared with normal FL. CD34" cells
(Figure 2F), consistent with gene-dosage effect in T21 and in
contrast to DS-AMKL where RUNXI1 expression is reduced.?
Further work on purified progenitors and functional studies will
determine whether altered RUNXI is relevant to abnormal FL
hemopoiesis in DS. We also found a modest (~ 2-fold) increase in
GATAI1 expression in DS-FL CD34* cells (Figure 2F), similar to
TMD and DS-AMKL.?° Changes in these megakaryocyte transcrip-
tion factors could also simply reflect the increased megakaryocyte-
erythroid compartment, although GATA2 expression was compa-
rable with normal FL cells (Figure 2F). These and other data about
T21 in other cell types suggest that the role of T21 in DS-AMKL is
probably complex and the result of changes in expression of many
genes on chromosome 21 and/or indirect effects on other disomic
genes rather than a single gene or very limited set of genes.?*

In conclusion, for the first time, this study shows that perturba-
tion of the FL myeloid progenitor compartment in human DS
precedes the acquisition of GATAI mutations and is characterized
by relative expansion of megakaryocyte-erythroid progenitors and
enhanced myeloid lineage clonogenicity, strongly suggesting that a
“leukemia-initiating” progenitor population is present within FL in
all DS fetuses. This has important implications because it provides
a testable hypothesis that DS T21 specifically expands an FL-
derived hemopoietic progenitor compartment, thereby creating a
substrate on which GATAI mutations confer a further selective
advantage.
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