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Venous thromboembolism is a major
medical problem, annually affecting 1 in
1000 individuals. It is a typical multifacto-
rial disease, involving both genetic and
circumstantial risk factors that affect a
delicate balance between procoagulant
and anticoagulant forces. In the last
50 years, the molecular basis of blood
coagulation and the anticoagulant sys-
tems that control it have been elucidated.
This has laid the foundation for discover-
ies of both common and rare genetic

traits that tip the natural balance in favor
of coagulation, with a resulting lifelong
increased risk of venous thrombosis. Mul-
tiple mutations in the genes for anticoagu-
lant proteins such as antithrombin, pro-
tein C, and protein S have been identified
and constitute important risk factors. Two
single mutations in the genes for coagula-
tion factor V (FV Leiden) and prothrombin
(20210G>A), resulting from approximately
20 000-year-old mutations with subse-
quent founder effects, are common in the

general population and constitute major
genetic risk factors for thrombosis. In
celebration of the 50-year anniversary of
the American Society of Hematology, this
invited review highlights discoveries that
have contributed to our present under-
standing of the systems that control blood
coagulation and the genetic factors that
are involved in the pathogenesis of ve-
nous thrombosis. (Blood. 2008;112:19-27)

Introduction

Venous thromboembolism is a major medical problem, affecting
1 in 1000 individuals annually, and most physicians come in
contact with patients suffering from the disease regardless of
their clinical specialty. It is a typical multifactorial disease, the
pathogenesis involving both circumstantial and genetic mecha-
nisms. As early as 1856, Virchow discussed 3 broad categories
of factors contributing to venous thrombosis and pulmonary
embolism, including alterations in the blood flow, changes in the
constitution of blood, and changes in the vessel wall.1 This is
known as Virchow’s triad and is still a useful concept to
illustrate the pathogenesis of thrombosis. Our present understand-
ing of the mechanisms of the disease reinforces this concept,
with known genetic and circumstantial risk factors affecting one
or more of the 3 categories of Virchow’s triad. Circumstantial
factors that increase the risk of thrombosis include increasing
age, immobilization, surgery, pregnancy, oral contraceptives,
hormone replacement, and inflammatory conditions. Essentially
all veins are vulnerable to thrombosis, although most common is
thrombosis in the lower limbs. This is due to high hydrostatic
pressure and the low flow rate that affect the veins in the legs, in
particular when the vessel wall elasticity decreases with age and
the venous valves become insufficient.

In the past 50 years, the molecular basis of both blood
coagulation and the anticoagulant pathways has been elucidated,
and several genetic risk factors for venous thrombosis have been
identified. These genetic risk factors affect the natural anticoagu-
lant mechanisms and result in a hypercoagulable state due to an
imbalance between procoagulant and anticoagulant forces. The
increased risk of thrombosis is lifelong, and thrombotic events tend
to occur when one or more of the circumstantial risk factors come
into play. The present review will provide a historical perspective
of venous thrombosis research, highlighting the discoveries that
have contributed most to our understanding of the anticoagulant

systems and lead to the identification of genetic risk factors for
thrombosis.

Multiple anticoagulant mechanisms control
blood coagulation

At sites of vascular injury, activation of blood coagulation results in
the generation of high concentrations of thrombin that activate
platelets and coagulate blood (Figure 1). The efficient coagulation
system is controlled by several anticoagulant mechanisms, ensur-
ing that the clotting process remains a local process. The initiation
of the coagulation system is the result of exposure of tissue factor
(TF) to blood and the subsequent binding and activation of factor
VII (FVII).2-5 TF serves as a cofactor to the enzyme FVIIa, the
TF-FVIIa complex efficiently activating factor IX (FIX) and factor
X (FX). The ensuing reactions take place on the surface of
negatively charged phospholipid membranes, exposed on activated
platelets, onto which the blood coagulation proteins bind and
assemble into enzymatically active complexes. Thus, FIXa binds to
its cofactor FVIIIa forming the tenase (FIXa-FVIIIa) complex that
activates additional FX, whereas FXa together with FVa form the
prothrombinase (FXa-FVa) complex that efficiently converts pro-
thrombin (PT) to thrombin. In these membrane-bound complexes,
FVIIIa and FVa serve as important cofactors to the enzymes FIXa
and FXa, respectively. Indeed, without the cofactors and the
negatively charged phospholipid, the efficiency of the 2 enzymes
FIXa and FXa is negligible, further ensuring that the enzymatic
reactions remain localized. The generated thrombin positively
feedback-activates the coagulation system by converting circulat-
ing precursors FVIII and FV into their active forms. The whole
system is designed to provide massive amplification of an initiating
stimulus and if not appropriately controlled, it would rapidly
convert circulating blood into a clot.
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Control of blood coagulation is achieved by several antico-
agulant mechanisms and at all levels of the system. Tissue factor
pathway inhibitor (TFPI) regulates the very initiation of coagu-
lation. It binds and inhibits newly formed FXa that is associated
with the TF-FVIIa complex.4,6,7 The activated coagulation
enzymes can all be inhibited by the circulating serine protease
inhibitor (serpin) antithrombin (AT), in particular when the
enzymes are not engaged with their respective cofactors.4,8

Another mechanism of control is achieved by regulation of the
2 cofactors FVIIIa and FVa by the protein C (PC) anticoagulant
system. Most genetic defects associated with thrombophilia
have been found to affect this system,4,6,9-11 and its discovery
and associated defects will be the major focus of this presenta-
tion. First, however, is a brief discussion about antithrombin
deficiency as a cause of thrombophilia.

Antithrombin deficiency, the first identified
genetic risk factor for venous thrombosis

As early as 1905, Morawitz proposed the concept of antithrom-
bin (AT) being responsible for the loss of thrombin activity after
coagulation of blood but it took until 1963 before an assay for
AT in plasma from clinical patients was presented.12 Shortly
thereafter in 1965, Egeberg reported the presence of AT
deficiency in a family having many members suffering from
venous thrombosis.13 AT is a multifunctional serpin, inhibiting
essentially all the active enzymes of the coagulation pathway.8

By itself, AT is a slow inhibitor, but the heparan sulfate (HS)
family of glycosaminoglycans present on intact endothelium
stimulates its inhibitory activity.14 In vivo, this provides the
basis for localization of the inhibitory activity of AT to the
surface of endothelial cells. Heparin, which is a member of the
HS family, is a particularly efficient stimulator of AT activity
and has been used as an anticoagulant drug for more than
70 years. The AT-binding region in heparin has been localized to
a pentasaccharide sequence.15 This knowledge has been the
basis for development of new synthetic pentasaccharide drugs
containing this sequence that stimulate the anticoagulant activ-
ity of AT.

No case of type I homozygous AT deficiency has been
described, suggesting that complete AT deficiency is incompatible
with life. This is further supported by the lethal phenotype observed
in AT knockout mice.16 There have been several type II homozy-
gotes described with mutations in the heparin-binding region of AT.
Heterozygous type I AT deficiency is relatively rare in the general
population (approximately 1 in 2000) and it is associated with an
approximately 10-fold increased risk of thrombosis. It is present in
1% to 2% of patients of thrombosis cohorts. A large number of
different mutations (missense, nonsense, and deletions) in the AT
gene have been described, resulting either in functional defects or
low plasma levels.8,17

Elucidation of the protein C anticoagulant
pathway

Many of the proteins of blood coagulation are vitamin K depen-
dent, and vitamin K antagonists (eg, dicoumarol or warfarin) have
been used to treat thrombosis since the 1950s. The description in
1974 of the posttranslationally modified �-carboxyglutamic acid
(Gla), uniquely present in vitamin K–dependent proteins, was not
only a breakthrough for the understanding of blood coagulation
mechanisms, but also paved the way for the discovery of a vitamin
K–dependent anticoagulant pathway we now know as the protein C
pathway.18-20 Protein C was isolated and identified as a vitamin
K–dependent protein by Stenflo in 197621 and was soon shown to
have anticoagulant properties after its activation by thrombin.22,23

The rapid elucidation of the function of protein C was facilitated by
the realization that activated protein C (APC) was identical to
autoprothrombin IIa, an anticoagulant activity described in the
1960s by Seegers et al in Detroit.24 Autoprothrombin IIa activity
was generated after thrombin treatment of a prothrombin pre-
paration, which in retrospect would certainly have contained
protein C, although at the time it was believed to be a fragment
of prothrombin. However, Marciniak did subsequently report in
1972 that the precursor of autoprothrombin IIa was a protein
distinct from prothrombin.25

Figure 1. The initiation and propagation of blood coagulation. The reactions of blood coagulation take place on the surface of cell membranes where enzymes and
cofactors form complexes that efficiently convert their respective proenzyme substrates to active enzymes. The reaction sequence is initiated by the exposure of tissue factor
(TF) to blood with subsequent binding of FVII/FVIIa and activation of FIX and FX. The following assembly of tenase (FIXa/FVIIIa) and prothrombinase (FXa/FVa) complexes on
the surface of negatively charged phospholipid membranes (provided mainly by platelets) results in amplification, propagation, and generation of high concentrations of
thrombin (T). The initial thrombin that is formed feedback-activates FVIII (circulating with von Willebrand factor [VWF]) and FV. Illustration by Marie Dauenheimer.
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Thrombin itself is a poor activator of protein C, and the
discovery by Owen and Esmon in 198126 of thrombomodulin (TM)
as a cofactor for the reaction was crucially important for the
understanding of the system.10,27 TM is present on the surface of
endothelial cells and thrombin that is generated in the vicinity of
intact endothelium binds with high affinity to TM. This is
associated with loss of the procoagulant activities of thrombin and
gain of the ability to activate protein C (Figure 2). The highest
concentration of TM in the circulation is in the capillary bed, where
the surface to volume ratio reaches its maximum. The high TM
concentration of TM in the microcirculation is crucial for local
protein C activation and anticoagulation of blood. In recent years,
an endothelial cell protein C receptor (EPCR) has been identified
and found to be important for the activation of protein C.28 EPCR
binds to the Gla domain of protein C and helps present the protein
C for the activating T-TM complex. The generated APC has a
relatively long half-life in the circulation (approximately
20 minutes) and is slowly inhibited by either the protein C inhibitor
(PCI) or by �-1 antitrypsin. APC inhibits the coagulation pathway
by specifically cleaving a limited number of peptide bonds in
FVIIIa and FVa, 2 of the important cofactors of the coagulation
pathway.9-11,29,30

Soon after the report on protein C, DiScipio, a PhD student in
Davie’s laboratory in Seattle, discovered yet another vitamin
K–dependent protein, which was named protein S (DiScipio et
al31). A few years later, Walker showed that protein S functions as a

cofactor to APC.32 Another interesting feature of protein S that was
soon discovered is that the protein is present in 2 forms in plasma,
as free protein S (30%-40%) and as part of a complex with the
complement regulator C4b-binding protein (C4BP).33 The major
isoform of C4BP in plasma is composed of 7 identical �-chains,
each containing a binding site for the complement protein C4b, and
a single protein S binding �-chain, the chains being arranged in an
octopus-like fashion.34 Free protein S serves as an APC cofactor,
whereas bound protein S can localize C4BP to negatively charged
phospholipid membranes (eg, those exposed on the surface of
apoptotic cells), thus providing local control of complement system
activation.34

The APC-mediated inhibition of FVIIIa and FVa occurs on the
surface of negatively charged phospholipid membranes (Figure 3).
Intrinsically, FVIIIa and FVa are both highly sensitive to APC, but
in the assembled tenase and prothrombinase complexes, they are
partially protected because their respective enzyme, FIXa and FXa,
sterically hinders APC. There are several APC-sensitive sites in
both FVIIIa (R336 and R562) and FVa (R306, R506, and R679),
and cleavage by APC results in loss of binding sites for the
enzymes FIXa and FXa, respectively, dissociation of fragments,
and disintegration of the FVIIIa and FVa molecules.29,30,35,36

The activity of APC is stimulated by protein S, the 2 vitamin
K–dependent proteins forming a complex on the negatively
charged phospholipid surface. In the regulation of the tenase
complex by APC, the APC-cofactor activity of protein S is

Figure 2. Activation of protein C by thrombin-
thrombomodulin. Thrombomodulin (TM) is present on
all endothelial cells and serves as a cofactor to thrombin
in the activation of protein C. The endothelium also
contains the endothelial protein C receptor (EPCR) that
binds the Gla domain of protein C and helps present
protein C to the T/TM complex. The activated protein C
(APC) then floats along with the bloodstream to control
reactions of coagulation. Illustration by Marie
Dauenheimer.

Figure 3. Degradation of FVa and FVIIIa by APC. Both
FVa and FVIIIa are cleaved and inhibited by APC in
surface-bound reactions also involving cofactors to APC.
Protein S and APC interact on the membrane and are
sufficient to inhibit FVa, whereas the regulation of the
FVIIIa additionally involves FV, which in this situation
serves as cofactor to APC. Illustration by Marie
Dauenheimer.

PATHOGENIC MECHANISMS OF THROMBOPHILIC DISORDERS 21BLOOD, 1 JULY 2008 � VOLUME 112, NUMBER 1

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/112/1/19/1297847/zh801308000019.pdf by guest on 08 June 2024



synergistically stimulated by the intact form of FV, suggesting that
FV has the potential to express both procoagulant and anticoagu-
lant properties.30,37 The plasma concentration of FVIII is almost
2 orders of magnitude lower than that of FV. As a consequence,
during activation of coagulation, tenase complexes are scarce in
comparison with the abundant prothrombinase complexes. This
may explain the need for the 2 APC-cofactors—protein S and
FV—for the regulation of tenase, whereas one cofactor—
protein S—suffices in the regulation of prothrombinase complexes
(Figure 4).

Identification of protein C deficiency in
patients with thrombosis

The discovery of the anticoagulant activity of APC called for
determination of the protein C concentration in thrombosis pa-
tients. In 1981, Griffin et al were the first to describe heterozygous
protein C deficiency in a family with a history of recurring
thrombosis.38 A few years later, homozygous protein C deficiency
was found to be associated with severe neonatal purpura fulminans
due to extensive intravascular thrombotization of the microvascula-
ture.39 Since then, a large number of protein C deficiencies (type I
or type II) have been described and their genetic background
elucidated.40 Type I deficiency denotes cases with decreased
protein concentration, whereas cases with type II deficiency have
normal protein C concentration but low protein C activity. In
cohorts of thrombosis patients, protein C deficiency was found
slightly more often than AT deficiency, but still in less than 5% of
the patients.41-44 It was initially believed that protein C deficiency
was a strong risk factor for thrombosis and protein C deficiency
was expected to be rare in the general population. Therefore, it was
surprising when Miletich et al in 1987 reported protein C defi-
ciency to be rather common among blood donors—prevalence
approximately 1:250—and that thrombosis was uncommon in
these individuals and their family members with protein C defi-
ciency.45 The subsequent identification of identical protein C gene
mutations in thrombosis-prone families and in families with low
incidence of thrombosis was particularly puzzling at the time.
A new idea emerged based on these observations, suggesting
protein C deficiency in itself to be a relatively mild risk factor and
that the thrombosis-prone protein C–deficient families carried

additional genetic factors that increased the risk of thrombosis.46

This concept was soon to gain additional support by the discovery
of APC resistance as a risk factor for thrombosis, and of the
common FV gene mutation that causes the condition.

Identification of protein S deficiency in
patients with thrombosis

In 1984, the first thrombosis patients with protein S deficiency were
described by Comp and Esmon,47 Comp et al,48 and Schwarz et al.49

Comp and Esmon observed that in some patients only the free form
of protein S was low, whereas the C4BP-bound protein S (and total
protein S) was normal. This pattern has been referred to as type III
protein S deficiency. In other cases, both the free and total protein S
levels were low (type I). Functional deficiency of protein S (type II)
has been described in only few cases, presumably due to the lack of
reliable functional assays for protein S. The difference between
types I and III was for many years elusive, but extensive family
studies performed in the 1990s demonstrated that certain families
had both types associated with the same mutation suggesting that
the 2 types are phenotypic variants of the same protein S gene
defects.50 The molecular explanation for the 2 types was provided
by careful analysis of the molar concentrations of protein S and the
�-chain containing C4BP (C4BP��) in plasma.51 Under normal
conditions, the concentration of protein S exceeds that of C4BP��

by approximately 30% to 40%. The 2 proteins bind to each other
with very high affinity and as a result, the free protein S is the molar
surplus of protein S over the C4BP��. Mild protein S deficiency
will consequently present with selective deficiency of free protein
S, whereas more pronounced protein S deficiency will also
decrease the complexed protein S and consequently the total
protein S level.50,52,53 These data explain why assays for free
protein S have higher predictive value for protein S deficiency.

Discovery of APC resistance/FV Leiden as a
major risk factor for venous thrombosis

In studies of thrombosis cohorts performed during the 1980s,
deficiencies of AT, protein C, and protein S were identified in less

Figure 4. Schematic representation of blood coagula-
tion and the protein C anticoagulant system. The
reactions that are presented in Figures 1 to 3 are here
summarized in a schematic form. In addition to the
FVIIa/TF-triggered initiation of coagulation, the scheme
indicates the activation of FXI by either the contact phase
system (CP) or by thrombin. The figure also highlights the
dual role of thrombin as both a procoagulant and antico-
agulant factor. Illustration by Marie Dauenheimer.
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than 10% of the patients even though positive family histories were
present in up to 40% of the cases.41,42,44 This suggested that there
were more genetic risk factors to be identified, and in 1993 a
breakthrough came in my laboratory with the discovery of APC
resistance.54 As many times in the history of science, serendipity
was involved. An unexpected behavior in a functional assay for
protein C of a single plasma sample from a patient with thrombosis
was the starting point for the search of the underlying mecha-
nism.55,56 An early key observation was that the addition of APC to
the patient plasma in a clotting assay did not result in the expected
prolongation of clotting time. This phenomenon prompted me to
coin the term APC resistance as a phenotypic description of the
condition. Follow-up work demonstrated that APC resistance was
inherited, in the original patient’s family as well as in other
investigated thrombosis-prone families.54 In subsequent studies of
thrombosis cohorts, APC resistance was found to be highly
prevalent (20%-60%) among thrombosis patients and also to be
relatively common in healthy control populations (5%-10%).57-59

Moreover, plasma-mixing experiments demonstrated that the under-
lying mechanism of APC resistance was the same in all identified
APC-resistant individuals.59

A protein extract of normal plasma was found to be able to
normalize the APC resistance, which provided a means to identify
and purify the protein involved in the molecular mechanism of
APC resistance. The protein was purified in my laboratory, and in
early 1994 we reported that its identity was coagulation factor V,
suggesting APC resistance to be caused by a mutation in the FV
gene.60 Soon several laboratories independently reported finding
the same causative mutation in the FV gene, a single point mutation
that results in the replacement of Arg506 in one of the APC-
cleavage sites with a Gln (Figure 5).61-65 The mutant FV is
commonly referred to as FV Leiden, as Bertina et al61 from the
Dutch city of Leiden were the first to report the mutation.
Unexpectedly, the FV mutation results in impaired degradation not
only of FVa but also of FVIIIa, the explanation being that the
APC-cofactor activity of intact FV in the regulation of the tenase
complex is dependent on cleavage at Arg506 by APC.37,66-68 The
intricate details of the molecular effects of the FV Leiden mutation
are described elsewhere, as is the full story of the discovery of APC
resistance.30,55,56,69

The prevalence of FV Leiden in different populations varies
widely from being absent to being found in up to 15% of healthy
individuals.30,70 All individuals with FV Leiden share the same FV
gene haplotype, suggesting a founder effect. Zivelin et al estimated
the mutation to be approximately 21 000 years old.71 This therefore
occurred after the “Out of Africa Exodus” and the subsequent
separation of the human races, explaining why the FV mutation is

found among whites, while it is rare or absent in populations from
Far East Asia, in black Africans, as well as in indigenous
populations of America and Australia. It is believed that the
absence of the FV Leiden mutation among these populations is the
explanation for their lower incidence of thrombosis. In Europe, the
mutation is particularly common (up to 15%) in certain areas (eg,
southern Sweden, Germany, and Cyprus).30,70 Similar high num-
bers have been found in many Middle Eastern countries. In other
regions, such as in Italy and Spain, the mutation is less frequent. In
multicultural societies, the ethnic background of the population
determines the prevalence of FV Leiden.

Heterozygosity for FV Leiden yields a lifelong hypercoagulable
state associated with approximately 5-fold increased risk of venous
thrombosis, the risk being considerably higher (approximately 50-fold)
among homozygotes.72-74 The most common clinical manifestations are
venous thrombosis and pulmonary embolism, whereas the FV Leiden
mutation is not a risk factor of arterial thrombosis.75,76 The high
prevalence in certain populations suggests that the FV mutation has
provided a survival advantage. It has been shown that the FV Leiden
mutation confers a lower risk of severe bleeding after delivery, which
during the history of humankind should have provided a major survival
benefit.77 On the other hand, the increased risk of venous thrombosis
associated with FV Leiden has presumably not been a strong negative
survival factor because thrombosis occurs relatively late in life and does
not affect fertility.

Identification of a prothrombin mutation as
risk factor for venous thrombosis

A few years after the identification of APC resistance and the
causative FV Leiden mutation, Poort et al in Leiden identified yet
another single point mutation as a risk factor of venous thrombo-
sis.78 In this case, the successful identification of the mutation was
based on a candidate gene approach involving extensive sequenc-
ing of certain genes in thrombosis patients and controls. The
mutation is located in the 3� untranslated region of the prothrombin
gene (nucleotide 20210 G to A) and thus does not change the
structure of the prothrombin molecule (Figure 6). However, the
mutation is associated with slightly increased plasma levels of
prothrombin, which results in a hypercoagulable state and a
lifelong 3- to 4-fold increased risk of venous thrombosis.74 Like the
FV Leiden mutation, a founder effect has been established (the
mutation is approximately 24 000 years old), and the prevalence of
the prothrombin mutation varies dependent on the geographic
location and ethnic background.71 The mutation is found in 2% to

Figure 5. Activation and degradation of normal FV
and FV Leiden. FV circulates as a single-chain high-
molecular-weight protein. Thrombin (or FXa) cleaves a
number of peptide bonds, which results in the liberation of
the B domain and generation of FVa. Three peptide
bonds in FVa are cleaved by APC (Arg306, Arg506, and
Arg679) resulting in inhibition of FVa activity. The FV
Leiden mutation eliminates one of the APC cleavage
sites, which impairs the degradation of FVa. Illustration by
Marie Dauenheimer.
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4% of healthy individuals in southern Europe, which is twice as
high as that in northern Europe. Like FV Leiden, it is rare in Far
East Asian populations, in Africa, and in indigenous populations of
Australia and the Americas. In Western societies today, the
mutation is found in 6% to 8% of venous thrombosis patients.79

Thrombophilia is a multifactorial disease

The pathogenesis of venous thromboembolism involves environ-
mental and genetic risk factors, and venous thromboembolism has
emerged as a typical example of a multifactorial disease.73,80-83 In
societies where the FV Leiden and prothrombin 20210A alleles are
common, many individuals are expected to carry more than one
genetic risk factor. In contrast, in countries having low FV Leiden
and prothrombin 20210A allele frequencies, few individuals will
carry multiple genetic defects. This may explain the lower inci-
dence of thromboembolic disease in, for example, China and Japan
compared with Europe and the United States. The number of
individuals carrying 2 or more genetic defects can be calculated on
the basis of the prevalence of the genetic defects in the population.
Assuming a prevalence of FV Leiden of 10%, combinations of
protein C or protein S deficiency and FV Leiden are expected to be
present in between 1 to 3 per 10 000 individuals, whereas the
combination of prothrombin and FV mutations would be found in
1 to 2 per 1000 individuals. Thus, quite a substantial number of
people would belong to the high-risk group with more than one
genetic defect.74,84,85

The incidence of thrombosis in individuals having genetic
defects is highly variable and some individuals never develop
thrombosis, whereas others develop recurrent severe thrombotic
events at an early age. This depends on the particular genotype, the
coexistence of other genetic defects, and the influence of environ-
mental risk factors such as oral contraceptives, trauma, surgery, and
pregnancy. Thus, women with heterozygosity for the FV Leiden
allele who also use oral contraceptives have been estimated to have
a 35- to 50-fold increased risk of thrombosis, while those with
homozygosity have a several hundred–fold increased risk.86

Laboratory evaluation of genetic risk factors
for thrombosis

FV Leiden can be identified by DNA-based assays or by functional
APC-resistance tests having close to 100% sensitivity and specific-

ity for the FV mutation.87,88 To distinguish heterozygosity and
homozygosity, DNA tests are required. Pseudohomozygous FV
Leiden (ie, individuals with one mutant FV allele and one null
allele) is suspected when the APC resistance test indicates a more
severe phenotype than the DNA test. Thus, even though the DNA
test suggests heterozygosity, in plasma all FV molecules are APC
resistant because the null allele is not expressed. DNA tests are
required to identify the prothrombin mutation (20210G�A),
whereas protein C, protein S, or AT is assayed by functional or
immunologic tests.88 Assays for the free form of protein S are
preferred over those measuring the total protein S level as they
have higher predictive value for protein S deficiency.50,52 Many
different mutations in the genes for protein C, protein S, and AT
have been have been found and DNA-based tests are not at present
considered useful for initial screening of thrombosis patients.

Management of thrombophilia

Venous thrombosis is in most cases initially treated with a
combination of heparin and vitamin K antagonists.89-94 The heparin
can be either unfractionated (UFH) or low molecular weight
(LMWH), prepared from UFH by either enzymatic or chemical
cleavage methods. LMWH has better pharmacokinetic properties
than UFH, and adequate anticoagulant control can be achieved with
a twice daily or single daily dose given subcutaneously. Heparin is
discontinued after a few days when the functional levels of vitamin
K–dependent coagulation proteins have dropped into the therapeu-
tic range. The effect of vitamin K antagonist therapy should be
regularly monitored by prothrombin time–international normalized
ratio (PT-INR) and it is usually continued for 3 to 6 months
depending on the severity of the thrombosis and its cause. The
benefits of the anticoagulation effect must always be weighed
against the risk of bleeding complications. Patients with one
genetic risk factor should be managed in the same way as any other
patient with thrombotic events until more specific recommenda-
tions are established. It is not yet established whether the presence
of a single genetic defect is associated with an increased risk of
recurrence. Among patients with unprovoked VTE, most studies
indicate that the presence of heterozygous factor V Leiden alone
does not lead to a higher recurrence rate than among those without
an identifiable mutation. Patients with combined genetic risk
factors may be at increased risk of recurrence, and accordingly
long-term anticoagulation therapy beyond 6 months may be
considered, even after an isolated thromboembolic event. However,

Figure 6. 20210G>A mutation in the prothrombin
gene. The single point G to A mutation at position 20210
affects the 3� untranslated region of the prothrombin gene
(F2). Thus the protein-coding sequence of the prothrom-
bin gene is not affected by this mutation. Illustration by
Marie Dauenheimer.
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more data are needed before these recommendations can be
considered generally applicable.93 In years to come, alternative
anticoagulant drugs (eg, synthetic pentasaccarides as an alternative
to LMWH or oral direct inhibitors of thrombin, FXa, or FVIIa) will
possibly replace the currently used therapeutic strategies95-97 and
hopefully decrease the risk of bleeding complications and diminish
the need of frequent monitoring. To date, there are no generally
accepted recommendations regarding screening for FV Leiden
prior to oral contraceptive use, pregnancy, and surgery. More
prospective data are needed, not least in terms of cost-benefit ratios
in populations with different prevalence of the mutation, before any
general recommendations can be made.

Genetic risk factors for thrombophilia yet to
be discovered?

It is noteworthy that it has been more than 10 years since the
prothrombin 20210G�A mutation was discovered, and one might
wonder whether there are many more additional genetic risk factors
of thrombosis yet to be discovered. In this respect, it is interesting
to compare thrombophilia with another multifactorial disease such
as type 2 diabetes, which until recently was considered a geneti-
cist’s nightmare.98 During the last few years, major advances have
been made in the understanding of the genetics of type 2 diabetes,
with the identification of 11 gene regions being involved. The
breakthrough depended on the availability of new high-throughput

genome-wide DNA analysis of single-nucleotide polymorphisms
(SNPs) of large well-defined patient cohorts.98 It is striking that all
the newly identified genetic risk factors have considerably lower
odds ratios (less than 1.5) than all the known risk factors of
thrombophilia. A similar high-throughput approach, applied to
well-defined cohorts of patients with venous thrombosis, could
help identify common genetic risk factors for thrombosis with low
individual odds ratios. Novel DNA technologies, together with
candidate gene approaches, studies of thrombophilic families, and
a more detailed investigation of key biologic pathways, will
hopefully further deepen our understanding of venous thromboem-
bolism and result in improved preventive measures and new
therapeutic targets.
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