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Marie José Kersten,2 Steven T. Pals,1 and Marcel Spaargaren1

Departments of 1Pathology and 2Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Chemokine-controlled migration plays a
critical role in B-cell development, differ-
entiation, and function, as well as in the
pathogenesis of B-cell malignancies, in-
cluding the plasma cell neoplasm mul-
tiple myeloma (MM). Here, we demon-
strate that stimulation of B cells and MM
cells with the chemokine stromal cell–
derived factor-1 (SDF-1) induces strong
migration and activation of the Ras-like
GTPase Ral. Inhibition of Ral, by expres-
sion of the dominant negative RalN28
mutant or of RalBP�GAP, a Ral effector

mutant that sequesters active Ral, results
in impaired SDF-1–induced migration of
B cells and MM cells. Of the 2 Ral iso-
forms, RalA and RalB, RalB was found to
mediate SDF-1–induced migration. We
have recently shown that Btk, PLC�2, and
Lyn/Syk mediate SDF-1–controlled B-cell
migration; however, SDF-1–induced Ral
activation is not affected in B cells defi-
cient in these proteins. In addition, treat-
ment with pharmacological inhibitors
against PI3K and PLC or expression of
dominant-negative Ras did not impair

SDF-1–induced Ral activation. Taken to-
gether, these results reveal a novel func-
tion for Ral, that is, regulation of SDF-1–
induced migration of B cells and MM
cells, thereby providing new insights into
the control of B-cell homeostasis, traffick-
ing, and function, as well as into the
pathogenesis of MM. (Blood. 2008;111:
3364-3372)

© 2008 by The American Society of Hematology

Introduction

Depending on their stage of development or differentiation, B cells
express specific chemokine receptors enabling them to respond to
chemokines that control homing to the bone marrow (BM) and
secondary lymphoid organs.1-3 Here they are provided with signals
crucial for progression through the consecutive stages of B-cell
development and differentiation. The chemokine stromal cell–
derived factor-1 (SDF-1, also known as CXCL12) plays an
important role in lymphocyte trafficking. SDF-1, originally identi-
fied as a growth-stimulatory factor for pre-B cells,4 is constitutively
expressed by BM stromal cells.5-7 Its cognate receptor, the 7-trans-
membrane G-protein–coupled receptor CXCR4, is broadly ex-
pressed by cells of the immune system and mediates SDF-1–
induced migration of hematopoietic progenitors and lympho-
cytes.1-3,8,9 In the B-cell lineage, CXCR4 is prominently expressed
by pre-B cells and controls localization in cellular niches in the BM
obligatory for B-cell development.3,8 Furthermore, CXCR4 expres-
sion by mature B cells is required for proper germinal center
organization, which is essential for antigen-specific B-cell differen-
tiation.10 In addition, SDF-1 controls plasma cell migration,6

and plasma cells require CXCR4 expression to localize in the
BM compartment.11,12

Multiple myeloma (MM), an incurable hematologic malignancy
with a median survival of 3 to 4 years, is characterized by the
expansion of malignant plasma cells in the BM. These tumor cells
also express CXCR4,13 and SDF-1 controls their �4�1-mediated
adhesion to VCAM-1, fibronectin, and endothelial cells, as well as
their transendothelial migration and homing/retention in the BM
tumor microenvironment.13-19 MM cells are critically dependent on

the BM microenvironment, where cytokines produced by BM
stromal cells provide them with proliferation and survival signals
required for their expansion.16 Thus, by controlling homing and
retention of MM cells in the BM, SDF-1 plays an important role in
the pathogenesis of MM.

The important role of chemokine-induced migration in B-cell
development and differentiation, as well as in the pathogenesis of
MM, prompted us to explore the underlying signaling pathways.
Recently, we have established an important role for Bruton tyrosine
kinase (Btk) and phospholipase C-�2 (PLC�2) in chemokine-
induced integrin-mediated migration and homing of B cells.20

Importantly, however, Btk is not expressed in plasma cells and MM
cells.21-23 Several members of the Ras superfamily of small
GTPases have also been implicated in chemokine-controlled B-cell
migration.24-27 This includes members of the Rho family24,25 and
members of the Ras family, such as Ras and Rap1.26,27 Ral, another
member of the Ras family of small GTPases, has been shown to
mediate a wide variety of cellular responses, including regulation
of cytoskeletal rearrangements and cell motility.28 Ral can bind to
and regulate the activity of phospholipase D1,29 the Sec5 and
Exo84 subunits of the exocyst complex,30,31 the actin binding
protein filamin,32 and the Cdc42/Rac GTPase-activating protein
Ral binding protein-1 (RalBP1).33,34 Notably, accumulating evi-
dence indicates that Ral is an essential mediator of Ras-induced
transformation of human cells.35-38 Interestingly, Ral is involved in
invasion and metastasis of transformed cells and in Ras- and
growth factor–controlled cell migration39-47; however, thus far a
role for Ral in chemokine-controlled signaling and migration has
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not been described. Here we show that Ral is activated in response
to SDF-1 and mediates SDF-1–induced chemotaxis of B cells and
MM cells.

Methods

Materials

Monoclonal antibodies used were mouse anti-RalA (IgG2a), anti-Rap1
(IgG1), biotinylated rat anti–mouse CXCR4 (2B11/CXCR4) (all Becton
Dickinson [BD] Biosciences, San Jose, CA), and Streptavidin-PE (South-
ern Biotechnology Associates, Birmingham, AL). Polyclonal antibodies
used were rabbit anti-RalB (BD Biosciences), rabbit anti–phospho PKB/
Akt (Ser 473), rabbit anti–phospho p44/42 MAP kinase (Thr 202/Tyr 204)
(both New England Biolabs, Beverly, MA), and HRP-conjugated rabbit
antimouse and HRP-conjugated goat antirabbit (both DAKO, Carpinteria,
CA). Pharmacological inhibitors used were LY294002, wortmannin,
PD98059, and U73122 (Biomol, Plymouth Meeting, PA).

Plasmids

pA-puroII-RasN1748 was kindly provided by Dr T. Kurosaki (Kansai
Medical University, Moriguchi, Japan). pRK5-RalBP�GAP and pMT2-HA-
RalAN28 were described previously.49 pRK5-RalBP�GAP was kindly
provided by Dr F. Zwartkruis (Utrecht Medical Center, The Netherlands).
pCDNA-HA-RalAN28 was generated by ligating the blunted PstI-digested
952-bp fragment of pMT2-HA-RalAN28 into EcoRV-digested pCDNA3.1�.
pA-puroII-HA-RalAN28 was generated by ligating the KpnI-XhoI–
digested fragment of pCDNA-HA-RalAN28 in KpnI-SalI–digested pA-
puroII. pTER-shRalA and pTER-shRalB were generated by ligating the
annealed oligos into BglII-HindIII–digested pTER. The oligonucleotides
used were as follows: for RalA, 5�-GATCCCGACAGGTTTCTGTAGAAGAT-
TCAAGAGATCTTCTACAGAAACCTGTCTTTTTGGAAA-3� and 5�-AG-
CTTTTCCAAAAAGACAGGTTTCTGTAGAAGATCTCTTGAATCTTC-
TACAGAAACCTTCGG-3�; for RalB, 5�-GATCCCGGTGATCATGGTTG-
GCAGCTTCAAGAGAGCTGCCAACCATGATCACCTTTTTGGAAA-3� and
5�-AGCTTTTCCAAAAAGGTGATCATGGTTGGCAGCTCTCTTGAAG-
CTGCCAACCATGATCACCGG-3�. These target sequences were previously
shown to result in efficient knockdown of RalA30 or RalB,50 respectively.

Isolation of primary cells and cell culture

Human tonsillar B cells were isolated essentially as described previously.51

Isolated B cells were maintained in RPMI containing 10% FCS and were
used immediately. Human primary MM cells were isolated essentially as
described previously.52 The Burkitt lymphoma cell line Ramos was cultured
in Iscoves medium (Life Technologies, Breda, The Netherlands) containing
10% fetal clone I serum (HyClone Laboratories, Logan, UT), 100 IU/mL
penicillin and 100 IU/mL streptomycin (Life Technologies), 20 mg/mL
human recombinant transferrin (Sigma, Bornem, Belgium), and 50 mM
�-mercaptoethanol. Isolated primary MM cells and XG-1 MM cells were
maintained in the same medium supplemented with 500 pg/mL IL-6 (R&D
Systems, Abington, United Kingdom). The Burkitt lymphoma cell line
Namalwa, and the MM cell lines NCI-H929 and OPM-1,53,54 were cultured
in RPMI 1640 supplemented with 10% fetal clone I serum, 2 mM
L-glutamine, 100 IU/mL penicillin, and 100 IU/mL streptomycin (all Life
Technologies). The chicken bursal lymphoma cell line DT40 was cultured
at 39.5°C as described.48 Stable overexpression of RasN17 in DT40 cells
was performed by electroporation, using the pA-puroII-RasN17 expression
vector (kindly provided by Dr T. Kurosaki), exactly as described.55

Ral and Rap pull-down assays

Cells were resuspended in RPMI or IMDM to 2.0 � 107 cells/mL and
stimulated with SDF-1 (100 ng/mL). Reactions were terminated by adding
an equal volume of cold 2 � lysis buffer (100 mM Tris-HCl [pH 7.4],
400 mM NaCl, 5 mM MgCl2, 2% Nonidet P-40, 20% glycerol, 2 �
EDTA-free protease inhibitor cocktail tablets [Roche, Indianapolis, IN] per

50 mL). After 10 minutes on ice, cell debris was removed by centrifugation.
Cell lysates were used immediately for Ral or Rap1 pull-down assays. For
this purpose, glutathione-Sepharose beads (100 �L of a 20% solution per
sample) were precoupled with GST-RalBP-RBD or GST-RalGDS-RBD
fusion protein by continuous mixing for 30 minutes at 4°C with bacterial
cell lysates from Escherichia coli strain AD202 transformed with pGEX4T3-
RalBP-RBD or E coli strain BL21 transformed with pGEX4T-RalGDS-
RBD96, respectively.56,57 After being washed 3 times with cell lysis buffer,
these precoupled beads were added to the cell lysates, and incubated for
30 minutes at 4°C during continuous mixing. Finally, the beads were
washed 4 times with lysis buffer, and bound proteins were eluted with
sample buffer, separated by 12% sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE), and immunoblotted with anti-RalA or
anti-Rap1.

Generation of stably transfected DT40 cells

Linearized pA-puroII-HA-RalN28 (25 �g) was mixed with 107 DT40 cells
in 0.5 mL RPMI 1640 medium in a 0.4-cm electrode gap Gene Pulser
Cuvette (BioRad, Hercules, CA) and electroporated using a Gene Pulser
Apparatus with Capacitance Extender (BioRad) at 250 V, 960 �F. After
24-hour recovery at 39.5°C in DT40 medium, cells were selected in DT40
medium containing 0.5 �g/mL Puromycin (Sigma). Puromycin-resistant
clones were screened for expression of HA-RalN28 by immunoblotting.

Transient transfections

Cells (107) in 0.5 mL RPMI 1640 medium were transfected by electropora-
tion as indicated with 5 �g pEGFP-N3 (for migration assays) or pRL-TK
(for adhesion assays), together with the indicated expression plasmids or
empty control plasmid up to a total amount of 25 to 30 �g DNA per
transfection. Cells were allowed to recover for 16 hours at 37°C in complete
medium. Then viable cells were isolated using Ficoll-Paque density
gradient centrifugation (Amersham Pharmacia, Uppsala, Sweden), and
after 24-hour incubation in complete medium cells were used in migration
or adhesion assays. For immunoblot analysis of RalA and RalB knockdown,
fluorescence-activated cell sorting (FACS)–sorted GFP-positive cells were
used.

Cell migration assay

Migration assays were performed in triplicate using 5-�m (DT40 cells) or
8-�m pore size Transwells (Costar, Cambridge, MA), washed twice with
PBS, and blocked for 1 hour at 37°C with 0.5% BSA in RPMI 1640. Unless
indicated otherwise, the lower compartment was filled with 600 �L 0.5%
BSA/RPMI containing 100 ng/mL SDF-1, and 5 � 105 cells in 100 �L
were applied to the upper compartment and allowed to migrate for 5 hours.
The amount of viable (GFP-positive) migrated cells was determined by
FACS and expressed as a percentage of the input, that is, the number of cells
applied directly into the lower compartment in parallel wells. Unless
otherwise indicated, the migration of nonpretreated WT or GFP-positive
empty control-plasmid transfected cells in the presence of SDF-1 was
normalized to 100% (	 SD) of triplicates.

Flow cytometry

Quantification of (GFP-positive) migrated cells and analysis of CXCR4
expression was carried out on a FACScalibur flow cytometer (BD
Biosciences) with CELLQuest software (BD Biosciences).

Cell adhesion assay

Adhesion assays were performed in triplicate on flat-bottom, high-binding
96-well plates (Costar) coated overnight at 4°C with PBS containing
1 �g/mL sVCAM-1 and 4% BSA, with or without 150 ng/mL SDF-1, and
then blocked for 1 hour at 37°C with 4% BSA in RPMI 1640. Cells
(1.5 � 105) were plated in 100 �L/well in RPMI containing 1% BSA, spun
down briefly (32g, 30 seconds) and incubated at 37°C for 2 minutes. After
extensive washing of the plate with RPMI containing 1% BSA to remove
nonadhering cells, the adherent cells were lysed and Renilla luciferase
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activity was determined according to manufacturer’s instructions (Dual-
Luciferase Reporter Assay System; Promega, Madison, WI). Adhesion was
calculated and corrected for transfection efficiency and nonspecific effects
of constructs by measuring Renilla luciferase activity of total input cells.

Immunoblotting

Immunoblotting was performed essentially as previously described.51

Quantification was performed using Image-Pro plus (MediaCybernetics,
Bethesda, MD) software.

Statistical analysis

The unpaired 2-tailed Student t test was used to determine the significance
of differences between means. All relevant comparisons were significantly
different (P 
 .05), unless otherwise indicated.

Results

SDF-1 induces migration and Ral activation in B cells and
MM cells

SDF-1 is an important chemoattractant for B cells,3,8-10 as illus-
trated by its potential to induce migration of the chicken bursal
lymphoma cell line DT40, the GC-like B-cell lymphoma cell lines
Namalwa and Ramos, and human tonsillar B cells in a Transwell
migration assay (Figure 1A). SDF-1 is acting exclusively as a true
chemotactic—and not a chemokinetic—factor, since migration
occurred only when SDF-1 was present in the lower but not the
upper compartment of the Transwells (Figure 1B). To determine
whether Ral is involved in chemokine-induced signaling, we
performed Ral pull-down assays. We found that SDF-1 stimulation
of the chicken B-cell line DT40 resulted in a rapid, transient
activation of Ral (Figure 1C). Ral was already maximally activated
after 30 seconds of SDF-1 stimulation, and Ral-GTP levels were
back to basal levels within 5 minutes. A similar pattern of Ral
activation was observed after SDF-1 stimulation of Ramos and
Namalwa B-cell lines as well as primary human tonsillar B cells
(Figure 1C).

Similar to normal plasma cells,6,11,12 SDF-1 is a potent chemoat-
tractant for MM cell lines13,14,17-19 and the malignant plasma cells
from MM patients,13,14,19,58,59 as illustrated by the ability of SDF-1
to induce migration of the MM cell lines NCI-H929 and OPM-1,
and of primary MM cells, in the Transwell migration assay (Figure
2A). In addition, for MM cells (cell lines and primary patient
material), SDF-1 is acting exclusively as a true chemotactic factor,
that is, migration occurred only when SDF-1 was present in the
lower but not the upper compartment of the Transwells (Figure
2A). Therefore, a role for Ral in SDF-1 signaling in MM cells was
also examined. Similar to B cells, Ral was activated in response to
SDF-1 in several MM cell lines and in primary MM cells (Figure
2B). Active Ral levels were maximal after 1 to 2 minutes of SDF-1
stimulation, and returned to basal within 5 minutes. Taken together,
these results demonstrate that SDF-1 induces migration and
activation of Ral in B cells and MM cells.

Ral mediates SDF-1–induced migration of B cells and MM cells

To investigate whether Ral mediates SDF-1–induced B-cell migra-
tion, we generated DT40 cells stably expressing a dominant
negative Ral mutant, RalN28, which prevents SDF-1–induced
activation of endogenous Ral (Figure 3A). Interestingly, in a
Transwell migration assay the RalN28-expressing cells showed
strongly reduced migration toward SDF-1 in comparison with
wild-type (WT) cells (Figure 3B), indicating that Ral mediates
SDF-1–induced migration. Expression of RalN28 did not affect
SDF-1–induced activation of the small GTPase Rap1, of PI3K (as
determined by phosphorylation of PKB), and of the MAP kinase
ERK (Figure 3A), which have previously been implicated in
SDF-1–induced migration.60-62 Thus, Ral does not mediate migra-
tion through activation of these migration-regulatory signaling
molecules. In addition, these results demonstrate the specificity of
the inhibitory effect of RalN28 on SDF-1–induced activation of Ral
and migration.

Inhibition of Ral by transient transfection of either RalN28 or
RalBP� GAP, a Ral effector mutant that sequesters active Ral, also
resulted in reduced SDF-1–induced migration of the MM cell lines

Figure 1. SDF-1 stimulation induces migration and
Ral activation in B cells. (A) DT40, Ramos, and Nama-
lwa B-cell lines, and human tonsillar B cells, were allowed
to migrate for 4 hours in the absence (c) or presence of
100 ng/mL SDF-1 (SDF-1) in Transwells (shown as the
mean 	 SD of triplicates). (B) DT40 cells were allowed to
migrate for 4 hours in the absence (�) or presence (�) of
100 ng/mL SDF-1 in the upper or lower compartment of
Transwells, as indicated (shown as the mean 	 SD of
triplicates). (C) DT40, Ramos, and Namalwa B-cell lines,
and human tonsillar B cells, were stimulated for the
indicated periods of time with 100 ng/mL SDF-1 and
lysed, and the amount of Ral-GTP in the lysates was
determined by pull-down assay (PD) using GST-RalBP-
RBD fusion protein. As a control, total lysates (TLs) were
immunoblotted and probed using anti-Ral antibodies.
(A,B) All relevant comparisons (eg, migration in absence
versus migration in presence of SDF-1) were significantly
different (P 
 .05). (A-C) The results are representative
of at least 2 independent experiments.
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OPM-1 and NCI-H929 (Figure 3C). Since Ral has been implicated
in the regulation of gene transcription and vesicle transport,30,31,55,63

the impaired responsiveness to SDF-1 upon inhibition of Ral could
have been the consequence of reduced surface expression of
CXCR4; however, CXCR4 expression of OPM-1 and NCI-H929
cells expressing either dominant negative Ral or RalBP�GAP was
similar to untransfected cells (Figure 3D), and inhibition of Ral did
not affect SDF-1–induced internalization or recycling of CXCR4
either (data not shown). In line with this, SDF-1–induced phosphor-
ylation of PKB and ERK was not affected by expression of RalN28
in OPM-1 MM cells (data not shown): please note that a GTPase
pull-down assay for Rap1 (or Ral) cannot be performed in these
transiently transfected MM cells due to limited transfection effi-
ciency and assay sensitivity.

Integrin-mediated adhesion is an important aspect of chemokine-
controlled migration and of the pathogenesis of MM. To investigate
whether Ral regulates SDF-1–induced integrin-mediated adhesion
of MM cells, OPM-1 cells were transiently transfected with
RalN28 or RalBP� GAP and allowed to adhere to VCAM-1 in the
presence of SDF-1. SDF-1 strongly induced adhesion, and inhibi-
tion of Ral due to expression of RalN28 or RalBP� GAP resulted in
a modest reduction of SDF-1–induced adhesion (Figure 3E).
Notably, inhibition of Rap1, another mediator of chemokine-
induced lymphocyte migration and adhesion,62 resulted in a
similarly modest inhibition of adhesion (data not shown). Taken
together, our results show that Ral mediates SDF-1–induced
migration, which may, at least in part, involve the control of
integrin activation.

RalB rather than RalA mediates SDF-1–induced MM migration

Mammalian cells can express 2 isoforms of Ral, RalA and RalB,
which show 85% identity. Although these proteins are highly
similar, they appear to have different functions. Whereas RalA is an
essential mediator of Ras-controlled tumorigenesis, RalB has
shown to be involved in tumor cell motility.37,46 To determine
which Ral isoform is involved in SDF-1–induced MM migration,

OPM-1 and NCI-H929 were transiently transfected with a GFP
construct and constructs expressing short-hairpin RNA (shRNA)
directed against either RalA, RalB, or, as a control, Renilla. In
OPM-1 cells, and to a lesser extent NCI-H929 cells, these
constructs were found to efficiently knock down expression of
RalA or RalB, respectively (Figure 4A). Notably, however, expres-
sion of RalA shRNA also resulted in decreased anti-RalB signal,
and vice versa (Figure 4A), indicating that although these antibod-
ies display isoform preference, they are not strictly specific. This
was confirmed by the observation that the anti-RalB antibody also
detects ectopically expressed RalA (data not shown). Interestingly,
MM cells transfected with shRNA against RalB showed impaired
migration toward SDF-1, whereas only a modest or no decrease
in migration was observed in cells with reduced RalA ex-
pression (Figure 4B). Furthermore, among the MM cell lines
there appears to be a correlation between the efficiency of RalB
silencing and the suppression of migration. Taken together, our data
suggest that SDF-1–induced MM cell migration is predominantly
mediated by RalB.

SDF-1–induced Ral activation is independent of Lyn/Syk, Btk,
PLC, PI3K, and Ras activity

Recently, we have established a prominent role for the cytoplasmic
kinases Lyn, Syk, and Btk, and for Btk-mediated activation of
PLC�2, in chemokine-controlled B-cell migration.20 Therefore, we
used cell lines deficient in Lyn and Syk, Btk, or PLC�2 to
investigate if Ral may act downstream of these signaling mol-
ecules. Interestingly, however, SDF-1–induced activation of Ral in
these gene-deficient cells was similar to the wild-type (WT) cells
(Figure 5A). In addition, the PLC isoform PLC� and PI3K have
been shown to mediate SDF-1–induced migration60,61; for PI3K,
this includes studies in B cells20,64-67 and myeloma cells.14,19,68,69 In
line with this, pretreatment with either the pharmacological PI3K
inhibitors LY294002 and wortmannin or the general PLC inhibitor
U73122 inhibited migration of DT40 cells (Figure 5B); however,

Figure 2. SDF-1 stimulation induces migration and
Ral activation in MM cells. (A) The MM cell lines
OPM-1 and NCI-H929, and the malignant plasma cells
from a MM patient, were allowed to migrate for 4 hours
in the absence (�) or presence (�) of 100 ng/mL
SDF-1 in the upper or lower compartment of Trans-
wells, as indicated (shown as the mean 	 SD of tripli-
cates). All relevant comparisons (eg, migration in ab-
sence versus migration in presence of SDF-1) were
significantly different (P 
 .05), and the results are
representative of 3 independent experiments and of
freshly isolated malignant plasma cells from 3 MM
patients. (B) NCI-H929, OPM-1, and XG-1 MM cell
lines, and primary human MM cells, were stimulated for
the indicated periods of time with 100 ng/mL SDF-1 and
lysed, and the amount of Ral-GTP in the lysates was
determined by pull-down assay (PD) using GST-RalBP-
RBD fusion protein. As a control, total lysates (TLs)
were immunoblotted and probed using anti-Ral antibod-
ies. The results are representative of at least 2 indepen-
dent experiments.
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Figure 3. Ral mediates SDF-1–induced migration of
B cells and MM cells. (A) Wild-type (WT) and stably
RalN28-transfected DT40 cells were stimulated for
1 minute with 100 ng/mL SDF-1 and lysed. The amount
of Ral-GTP and Rap1-GTP in the DT40 lysates was
determined by pull-down assay (PD) using GST-RalBP-
RBD and GST-RalGDS-RBD fusion protein and immuno-
blotting with anti-Ral and anti-Rap, respectively. Total
lysates (TLs) were immunoblotted and probed using
anti-Ral, anti–P-PKB, or anti–P-MAPK (P-ERK) antibod-
ies. The lower (minor) band in the Ral pull-down assays
of the RalN28-expressing DT40 cells represents endog-
enous Ral and the upper 2 (major) bands represent
overexpressed HA-tagged RalN28 (*), that is, the full-
length and a partial product resulting from instability of
RalN28. (B,C) Wild-type (WT) and stably RalN28-
transfected DT40 cells (B) or OPM-1 and NCI-H929 MM
cells cotransfected with GFP and either RalN28 or
RalBP�GAP (C) were allowed to migrate for 4 hours in
the absence (c) or presence of 100 ng/mL SDF-1 (SDF-1)
in Transwells. The migration (of GFP-positive cells) in
the presence of SDF-1 was normalized to 100%, and is
shown as the mean (	 SD) of triplicates. All relevant
comparisons were significantly different (P 
 .05). The
results are representative of at least 3 independent
experiments. (D) OPM-1 and NCI-H929 MM cells cotrans-
fected with GFP and either RalN28 or RalBP�GAP were
analyzed for CXCR4 expression by FACS. The results
are representative of at least 3 independent experi-
ments. (E) OPM-1 MM cells cotransfected with Renilla
luciferase and either RalN28 or RalBP�GAP were al-
lowed to adhere to VCAM-1 for 2 minutes in the absence
(c) or presence of SDF-1. The Renilla luciferase activity
for the cells adhering to VCAM-1 in the presence of
SDF-1 (reflecting 52% of input cells) was normalized to
100%, and shown as the mean (	 SD) of 3 independent
experiments. All relevant comparisons were significantly
different (P 
 .05).
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these pharmacological inhibitors did not affect SDF-induced Ral
activation either (Figure 5B).

Ral can be activated by Ras-independent mechanisms via
Ca2�56; and calmodulin70 or �-arrestins71; however, most cyto-
kines have been found to activate Ral in a Ras-dependent
manner.72,73 Therefore, we used DT40 cells stably expressing
RasN17, a dominant negative Ras mutant, to examine whether
SDF-1–induced Ral activation requires Ras activity. However,
whereas BCR-controlled activation of Ral55 and SDF-1–induced
phosphorylation of the downstream Ras target Erk were com-
pletely abolished in these RasN17-expressing cells, activation
of Ral by SDF-1 was not affected (Figure 5C).

Taken together, these data demonstrate that activation of Ral is
required but not sufficient for full SDF-1–induced migration, and
SDF-1–induced activation of Ral and Ral-mediated migration
occurs independent of the established migration-regulatory path-
ways involving Lyn/Syk, Btk, PLC, PI3K, or Ras.

Discussion

We found that SDF-1 stimulation of B cells and MM cells results in
activation of the small GTPase Ral (Figures 1C and 2B). Expres-
sion of RalN28 or RalBP�GAP led to reduced migration of B cells
and MM cells toward SDF-1 (Figure 3), indicating that Ral
mediates SDF-1–induced B-cell and MM cell migration. Notably,
inhibition of Ral in the Jurkat T-cell line also resulted in diminished
SDF-1–induced migration (data not shown), suggesting that Ral is
involved in SDF-1–induced lymphocyte migration in general and
not only in migration of B cells. The recently identified mediators
of chemokine-induced B-cell migration and homing, Btk and
PLC�2,20 are not involved in GTP loading of Ral upon SDF-1
stimulation (Figure 5A). In addition, PI3K and other PLC isoforms
that are known to mediate chemokine-induced responses (Figure
5B)60,61 are not involved in SDF-1–induced activation of Ral
(Figure 5B). Interestingly, whereas Ras mediates Ral activation in
response to several stimuli, inhibition of Ras activity by stable
expression of a dominant negative Ras mutant did not affect
SDF-1–induced Ral activation (Figure 5C). Thus, activation of Ral
and Ral-mediated migration appears to occur independent of these
established migration-regulatory pathways. DOCK2 is another
important mediator of lymphocyte chemotaxis, which controls

activation of the migration-regulatory GTPases Rac and Rap1.74,75

Therefore, it would be interesting to be determine whether
chemokine-induced Ral activation may occur in a DOCK2-
dependent manner.

Members of the Rho family of small GTPases have been
identified as important mediators of lymphocyte migration. The C3
exoenzyme from the bacterial pathogen Clostridium botilinum,
which ADP ribosylates and thereby inactivates RhoA, RhoB, and
RhoC, is widely used as tool to elucidate the cellular functions of
Rho GTPases. For example, C3 treatment impairs SDF-1–induced
MM cell adhesion to VCAM-1 and fibronectin.15 Interestingly, C3
was also found to bind with high affinity to GDP-bound Ral
GTPases.76,77 C3 binding to Ral stabilizes the GDP-bound, inactive
conformation, and as a consequence C3 interferes with Ral
signaling.77 Moreover, by binding of C3 to Ral, the ribosylation and
inactivation of Rho is blocked.76,77 This can be overcome by
increasing the C3 concentration,76 suggesting that C3-mediated
inactivation of Rho occurs only after all Ral proteins have been
inhibited. Therefore effects of C3 that are ascribed to Rho
inactivation could also be due to inhibition of Ral.

Ral might regulate chemokine-controlled migration in various
manners. Ral GTPases may control chemotaxis by modulating the actin
cytoskeleton through interaction with the Cdc42/Rac GTPase-activating
protein RalBP1.33,34 In addition, RalA can control filopodia formation
by recruitment of the Ral-effector complex the exocyst78 and the actin
filament cross-linking protein filamin,32 which can affect migration.
However, RalB rather than RalA was found to mediate MM cell
chemotaxis (Figure 5B). Similarly, specifically RalB was recently
shown to be involved in cancer cell motility.46,47 By recruiting the
exocyst, RalB is believed to control the coordinated delivery of
secretory vesicles to the sites of dynamic plasma membrane expansion
that specify directional movement.47 The differential requirement for
Ral isoforms in cell migration might be the consequence of differences
in the C-terminal variable regions of RalA and RalB. Due to their
different C-termini, RalA and RalB localize to different subcellular
compartments, which determines their specific functions.37,79 In addi-
tion, despite the high degree of effector-binding domain sequence
homology, the affinity for effectors varies between the 2 Ral isoforms.79

Previously, Bhattacharya et al found that Ral is involved in
fMLP-induced cytoskeletal reorganization.71 In this study, the
RalGEF RalGDS was found to be activated by �-arrestins in a
Ras-independent manner. Interestingly, �-arrestins are important

Figure 4. RalB rather than RalA mediates SDF-1–
induced MM cell migration. (A) Lysates of OPM-1 and
NCI-H929 MM cells co-transfected with GFP and shRe-
nilla, shRalA, or shRalB were immunoblotted to deter-
mine RalA and RalB expression. Actin served as a
loading control. (B) OPM-1 and NCI-H929 MM cells
co-transfected with GFP and shRenilla, shRalA, or
shRalB were allowed to migrate for 4 hours in the
absence (c) or presence of 100 ng/mL SDF-1 (SDF-1)
in Transwells. The migration of the shRenilla-trans-
fected GFP-positive cells in the presence of SDF-1 was
normalized to 100%, and shown as the mean 	 SD of
triplicates (*P 
 .05). The results are representative of
at least 2 independent experiments.

Ral MEDIATES SDF-1–INDUCED MIGRATION 3369BLOOD, 1 APRIL 2008 � VOLUME 111, NUMBER 7

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/111/7/3364/1483487/zh800708003364.pdf by guest on 02 June 2024



mediators of G-protein–coupled receptor signaling,80 and are
required for CXCR4-mediated lymphocyte chemotaxis.81 �-
Arrestin-mediated SDF-1–induced chemotaxis was found to be
mediated by the p38 MAPK,82 a signaling molecule activated by
Ral in growth factor signaling.83 Combined with our observation
that SDF-1 induces Ral activation independent of Ras activity
(Figure 5C), it is tempting to speculate that SDF-1 activates Ral via
�-arrestins, which may lead to p38-mediated chemotactic re-
sponses. JNK, another MAPK, was also found to be involved in
B-cell chemotaxis,84 and in mediating several Ral-dependent
processes, including tissue development,85 protection against oxida-
tive stress,86 and survival of tumor cells.38 Thus, p38 as well as JNK
may act downstream of Ral in SDF-1–induced chemotaxis of B
cells and MM cells.

We have shown that Ral is activated upon stimulation with
SDF-1 and mediates SDF-1–induced migration of MM cells
(Figures 2B and 3B). Several chemokines, including SDF-1, are
produced by BM stromal cells and act as chemoattractants for MM
cells.13,14,17-19,58,59 As a consequence, MM cells reside in the BM,
where various cytokines produced in the microenvironment induce
MM growth and survival. Hence, chemoattractants controlling
homing of MM cells to the BM can be considered equally
important for MM growth as the cytokines that provide the actual

proliferative and antiapoptotic signals. Consequently, Ral may play
an important role in the pathogenesis of MM. In addition, Ral
appears to be an important mediator in Ras-induced transformation
of solid tumors,35-38 and may also directly control the survival and
proliferation of MM cells. Thus, by inhibition of Ral both
migration to the BM and direct MM growth might be affected. This
putative property of Ral, being involved in both MM cell migration
and MM growth and survival, could make this protein a very
attractive target for therapeutic intervention.

In conclusion, we have shown that Ral mediates SDF-1–
controlled migration of B cells and MM cells and may therefore
play an important role in B-cell development and function, as well
as in the pathogenesis of MM.
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