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We have studied the plasma membrane
protein phenotype of human culture-
amplified and native bone marrow mesen-
chymal stem cells (BM MSCs). We have
found, using microarrays and flow cytom-
etry, that cultured cells express specifi-
cally 113 transcripts and 17 proteins that
were not detected in hematopoietic cells.
These antigens define a lineage-
homogenous cell population of mesen-
chymal cells, clearly distinct from the

hematopoietic lineages, and distinguish-
able from other cultured skeletal mesen-
chymal cells (periosteal cells and syno-
vial fibroblasts). Among the specific
membrane proteins present on cultured
MSCs, 9 allowed the isolation from BM
mononuclear cells of a minute population
of native MSCs. The enrichment in colony-
forming units—fibroblasts was low for
CD49b, CD90, and CD105, but high for
CD73,CD130,CD146, CD200, and integrin

alphaV/beta5. In addition, the expression
of CD73, CD146, and CD200 was down-
regulated in differentiated cells. The new
marker CD200, because of its specificity
and immunomodulatory properties, de-
serves further in-depth studies. (Blood.
2008;111:2631-2635)
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Introduction

Bone marrow mesenchymal stem cells (BM MSCs) are defined as
adherent culture-amplified cells giving rise, when cultured in
appropriate conditions, to adipocytes, osteoblasts, and chondro-
cytes.! The phenotype of cultured MSCs remains limited in spite of
several decades of study.?>? In addition, there has been only
scattered data on the phenotype of the native BM MSCs because
different markers have been used for MSC isolation in independent
studies.®!7 In this work we have studied the plasma membrane
protein phenotype of cultured cells, screening for molecules not
detected in hematopoietic cells. Hierarchical and principal compo-
nents analyses of the transcripts coding for membrane proteins
and distribution of the membrane antigens indicate lineage-
homogeneity. Nine of the proteins detected specifically on cultured
mesenchymal cells have proven useful to sort native MSCs from
BM mononuclear cells (MNCs). This study should help select the
optimal marker for BM MSCs and help discriminate MSCs from
other stem/progenitor cells present in the bone marrow (hematopoi-
etic stem cells, multipotent adult progenitor cells,'® SSEA-1*
cells,! etc).

Methods

Approval for these studies was given by the Comité Consultatif de

Protection des Personnes participant a la Recherche Biomédicale
(CPPRB) for the University Hospital in Tours. Informed consent was

obtained in accordance with the Declaration of Helsinki. Details of
materials and methods used are in Document S1 (available on the Blood
website; see the Supplemental Materials link at the top of the online article).

MSC culture and in vitro differentiation

Human BM cells obtained from iliac crest aspirates were amplified as
described.?’ After culture in adipogenic, chondrogenic, and osteogenic
media, differentiation was evaluated by histochemical methods?® and
reverse transcription—polymerase chain reaction (RT-PCR) analysis.

Culture of synovial fibroblasts and periosteal cells

Synovial tissues were collected postmortem from normal joints. Periosteal
autografts were harvested from mastoids of patients undergoing mastoidec-
tomy. Tissues were digested with collagenase, cells were cultured as
described in Document S1.

Flow cytometry

Cells were incubated with conjugated monoclonal antibodies (mAbs) or
with purified mAbs (Table S7). Acquisitions were performed on a FACSCali-
bur flow cytometer (BD Biosciences, San Jose, CA).

Cell sorting and CFU-F assays

CD235a*,CD45%, and CD11b™ hematopoietic fractions were isolated from
BM samples using magnetic-assisted cell sorting (MACS; Miltenyi Biotec,
Auburn, CA). The remaining cells were labeled with phycoerythrin
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(PE)-conjugated mAbs and sorted using a MoFlo cell sorter (Dako,
Glostrup, Denmark). For fibroblast colony-forming unit (CFU-F) assays,
mononuclear cells were seeded at 2000 to 40 000 cells/cm?, and sorted cells
at density 100 to 1000 cells/cm?. Colonies were counted after 10 days.

Microarrays

Microarray data are available in the Gene Expression Omnibus (GEO)?! at
http://www.ncbi.nlm.nih.gov/geo/ with accession number GSE9894.

RNA was extracted from 6 P1 MSC samples and 3 samples each of
CD235a*, CD45", and CD11b™ cells. Hybridization on HG-U133 Plus 2.0
microarrays (Affymetrix, Santa Clara, CA) was performed according to
standards supplied by Affymetrix. Affymetrix GCOS 1.2 software was used
to generate DAT, CEL, and EXP files and to process raw data for signal
calculation and pairwise chip comparison. Group comparison and gene
retrieval was performed using the online database SiPaGene.?> Hierarchical
clustering and principal components analyses were performed using
Genesis software (http://www.genesis-softwareonline.com/).

In vivo study of bone formation

Micro-macroporous biphasic calcium phosphate (MBCP) ceramic discs
loaded with CD200" culture-amplifed MSCs were implanted subcutane-
ously in the backs of nude mice.”? Implants were harvested at 4 weeks and
examined by histology (Goldner trichrome) and by scanning electron
microscopy (back-scattered electrons mode).

Results and discussion
The pattern of membrane protein expression in cultured MSCs

We determined the transcripts encoding outer plasma membrane
proteins (excluding Golgi, mitochondriae, etc.) using Affymetrix
microarrays in 6 P1 samples. Of 1624 inventoried molecules, we
detected 464 transcripts including 98 CDs (Tables S1,S3). Among
these transcripts were 118 channel/transporter proteins, 102 cell-
cell or cell-matrix adhesion receptors, 57 cytokine receptors and
20 junction molecules (tight, gap, etc.). Most receptors specific for
immune cells (T cells, B cells, NK lymphocytes, dendritic cells,
and monocytes/macrophages), and receptors for chemokines, hor-
mones, neuromediators, and neuropeptides were not detected
(Tables S2 and S4).

Of 114 membrane proteins studied by flow cytometry, we
detected 51 proteins (Figure 1A,B, Tables S6,S7), among which
were adhesion receptors (integrins, immunoglobulin superfamily
members, tetraspanins, etc), diverse receptor tyrosine kinases, and
HLA-ABC (but not HLA-DR). Remarkably, antigens expressed at
high (relative mean fluorescence intensity [rMFI] = 100), moder-
ate (10 = rMFI < 100) or low (2 = rMFI < 10) levels remained at
the same level from one sample to the other.

We then investigated whether levels of detected mRNAs
were correlated with those of proteins by plotting the rMFI
given by flow cytometry studies versus the signal intensity
(S) determined by microarrays. The highly significant
(r> = 0.453, P <.001) regression plot of log(rMFI) versus
log(S) indicated a parabolic relationship.

The population of cultured BM MSCs is clearly distinct from
those of hematopoietic cells

A panel of 147 CDs was selected (genes identified as “absent” by
GCOS 1.2 in all samples were excluded). Hierarchical clustering
indicated that the population of cultured MSCs belonged to a
cluster clearly distinct from populations of hematopoietic cells
(Figure 1C). Moreover, the population of cultured MSCs did not
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contain discernible cell subsets and was distinguishable from other
skeletal, but non—-BM-derived, cultured mesenchymal cells, that is,
periosteal cells (POCs) and synovial fibroblasts (SFbs). The first
3 components of the principal components analysis (PCA) con-
firmed the distinctions (Figure 1D): hematopoietic cells were
discriminated from mesenchymal cells according to the x-axis,
while y- and z-axes allowed us to distinguish the different
hematopoietic (CD45", CD11b*, and CD235a") and mesenchymal
(MSC, POC, and SFb) populations.

Of the 464 transcripts (including 98 CDs) expressed in cultured
MSCs, the 113 (including 20 CDs) that were not detected in
hematopoietic cells (except for 4 transcripts detected at low level)
were defined as specific (Table S5). Of the 20 specific CDs (Figure
1E), 17 could be studied at the protein level and were expressed at
the plasma membrane: CD49b, CD90, CD73, CDI105, CD130,
CD140a, CD140b, CD146, CD151, CD200, CD202b, CD266,
CD295, CD325, CD332, and integrin alphaV(CD51)/beta5(ITGBY).
Five of these (CD146, CD200, CD295, CD325, CD332) discrimi-
nated also at the transcript level MSCs from POCs and SFbs.

Our data demonstrate that cultured cells constitute a lineage-
homogenous cell population. Lineage specificity is defined by a set
of markers estimated on the MSC population as a whole. The
mesenchymal lineage was clearly distinct from the hematopoietic
lineage because (1) 24.5% (113/464) of the transcripts for mem-
brane protein antigens were detected specifically on cultured
MSCs, and (2) hierarchical clustering and PCA showed that the
different hematopoietic cell populations segregated apart from
cultured MSCs and showed no major gene expression variability
from one MSC sample to the other. Moreover, clustering also
discriminated MSCs from other non-BM-derived, cultured skeletal
mesenchymal cells. Lineage-homogeneity is a population character-
istic that does not preclude clonal heterogeneity within the
population. Clonal heterogeneity has been evidenced by the study
of CFU-Fs whose differentiation potential, albeit variable, remains
restricted to the mesenchymal lineages.!*+>

For cell therapy it is essential to transplant a well-defined and
lineage-homogenous cell population, as obtained in our study. Our
standardized protocol has been upscaled to provide sufficient cells
with known phenotype and differentiation potential for therapeutic
administration. Using this protocol, a randomized trial for preven-
tion of acute graft-versus-host disease is in progress, including
12 patients thus far.

Analysis of membrane proteins on bone marrow mononuclear
cells allows definition of the cell population of origin

We hypothesized that some of the specific membrane antigens
present on cultured MSCs would define the BM mesenchymal cell
population of origin containing the CFU-Fs. Of the 17 CD markers
specific for cultured MSCs, 9 (53%) reproducibly allowed us to
determine a minute population of BM mononuclear cells contain-
ing the CFU-Fs: CD49b, CD73, CD90, CD105, CD130, CD146,
CD200, and integrin alphaV/beta5S (Figure 2A). The percentage of
BM cells recovered varied from 1.9% (CD105) to 0.014% (alphaV/
beta5) of the total MNCs, indicating that some of the antibodies,
such as CD49b and CD105, selected a population encompassing,
but not being restricted to, native MSCs (Figure 2B). The
enrichment in CFU-Fs was low (23- to 60-fold) for CD49b,
CD105, and CD90; high (100- to 333-fold) for CD73, CD130,
CD146, and CD200; and very high (1750) but also highly variable
for alphaV/beta 5 (Figure 2B).

Finally, after adipogenic and osteogenic induction, the protein
expression of CD49b, CD73, CD105, CD146, and CD200 was
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Figure 1. Cultured BM MSCs. (A) Phenotype of P1 cells: positive markers detected using PE-conjugated mAbs. Cells were collected at the end of passage 1 (P1, day 36),
after trypsinization of confluent layers. Cells were incubated with PE-conjugated mAbs added at saturating concentration, as indicated in Document S1. (B) Phenotype of P1
cells: positive markers detected using purified unconjugated mAbs. For indirect staining, cells were incubated with the primary mouse antihuman mAbs, then with biotinylated
goat anti-mouse Ig Ab, and finally with R-phycoerythrin (RPE)-conjugated streptavidin, as indicated in Document S1. (C) Hierarchical clustering. Hierarchical clustering was
performed using a panel of 147 CD transcripts (genes identified as “absent” by GCOS 1.2 in all samples were excluded), on 6 independent samples of P1 MSCs, 3 samples
each of CD45* (CD45), CD11b* (CD11b), and CD235a™* (GlyA) hematopoietic cells, 3 samples of periosteal cells (POC), and 4 samples of synovial fibroblasts (SFb). Clusters:
i- lymphoid cluster including CD2, CD3E, CD3Z, CD8A, CD117, CD122, CD132, CD160, and CD197; ii: erythroid cluster including CD234, CD235a, CD240, CD241, and
CD388; iiic: MSC cluster including CD49b, CD51, CD90, CD73, CD105, CD130, CD140a, CD140b, CD146, CD151, CD202b, CD266, CD295, CD325, and CD332; iv: SFb
cluster including CD9, CD34, CD42b, CD62P, CD66d, and CD227. (D) Principal components analysis. Analysis was carried out using the same CD transcripts and on the same
samples as for hierarchical clustering. Each plotted data point represents a single profile. (E) Specific CD transcripts. Among the 113 transcripts (given in Table S5) specifically
expressed in cultured MSCs, 20 are CD membrane antigens. The line plot indicates the mean of signal intensities for the 6 MSC samples [S(MSC)] and the 3 samples each of
CD45* [S (45)], CD11b™ [S(11b)], and CD235a* [S (235)] cells.
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Figure 2. Native BM MSCs. (A) Flow cytometric sorting of

IgG1 lgG2a CD49%b CD73 CD90 CD105 native cells. BM mononuclear cells were prepared and labeled

@ as indicated in Document S1. The sorting gate was determined

on the FL2 vs SSC as shown. For SSEA-1, no specific cell

m subset corresponding to the sorting gate was identified. The

E g ﬂ ﬂ ﬂ percentages (mean + SEM, n = 7) of BM cells recovered from
C . the total MNCs was (highest to lowest) 1.9% (= 0,4%;

CD130 | cm 46 cozoo avbs SSEA-4 SSEA CD105), 0.7% (* 0.2%; CD49b), 0.28% (= 0.03%; CD90),
0.17% (* 0.025%; CD130), 0.16% (= 0.035%; CD73), 0.16%
(+ 0.015%; CD146), 0.15% (* 0.04%; CD200), and 0.014%
(= 0.004%; integrin alphaV/beta5). (B) Cell recovery and enrich-
ment in CFU-Fs in the sorted fractions. Red bars indicate cell
recovery (percentage of cells recovered in the sorted fraction).
Blue bars indicate enrichment in CFU-Fs (cloning efficiency in
sorted cells related to that in total mononuclear cells before
sorting). Mean values are indicated on top of each bar; error bars
represent SEM (n = 4). AV/B5 indicates integrin alphaV/beta5.
(C) Protein expression after differentiation. The pattern of protein
expression was studied by flow cytometry before differentiation
of culture-amplified BM MSCs at passage 1 (continuous red
line) and 10 days after induction in osteogenic (continuous green
line) and adipogenic (continuous blue line) media (1 representa-
tive experiment of 3). Discontinuous lines indicate irrelevant
isotype controls. Notice the decrease in expression for CD73,
CD105, CD146 and CD200; for CD90 the expression declined
only after adipogenic induction; for CD130 there was no de-
crease. (D) CFU-Fs from CD200* cells. CD200* sorted cells
(n=6) were cultured in alpha-MEM plus 10% FCS plus
1 ng/mL bFGF plus supplements as indicated in Document S1.
Cultures were screened at days 2, 5, and 10. CFU-Fs were
counted at day 10. CFU-Fs could not be grown from CD200~
cells. Similar results were obtained for the different sortings
using antibodies indicated in panel A. (E) In vitro adipocytic,
osteoblastic, and chondrocytic differentiation of CD200* cells:
histochemical markers. P1 confluent layers obtained from
CD200" cells were trypsinized and cells were seeded in differen-
tiation media as indicated in Document S1. Adipocytic differentia-
tion was assessed after 14 days by revealing the presence of
cells containing large Nile Red O* intracytoplasmic vesicles.
Osteoblastic differentiation was assessed after 21 days by
revealing the presence of von Kossa® and Alizarin Red*
mineralized areas. Chondrocytic differentiation was assessed
after 21 days by revealing the presence in the micropellets of
cartilage-specific glycosaminoglycans stained by Safranin O,
Toluidine Blue and Alcian Blue. Similar results were obtained for
CD146™ cells (data not shown). Experiments were performed in
duplicate. Micrographs were acquired with a Leica Microsys-
tems microscope fitted with 10/0.22 or 20x/0.30 objectives, a
Nikon digital camera (DMX1200F; Nikon, Champigny-sur-
Mare, France), and Nikon AXT-1 acquisition software (v2.63).
(F) In vitro adipocytic, osteoblastic and chondrocytic differentia-
tion of CD200* cells: molecular markers. RNA was extracted
from CD200" cells cultured in proliferation medium (P) or
-’ : X differentiated into adipocytes (A), osteoblasts (O) and chondro-
cytes (C). Experiments were performed in parallel on CD200*

co146 cozoo cm“ cozoo and CD146" cells. RT-PCRs were performed using primers
H B.JL A_Q. n‘—Q_ specific for C: transcription factor SOX-9 (SOX9), aggrecan core
PP ARG -RU NX 2 protein (AGC1), collagen 2, alphal chain (COL2A1), collagen

10, alphal chain (COL10AT), A: peroxisome proliferator-

FAB P4 A activated receptor gamma (PPARG), fatty acid-binding protein

(FABP4), lipoprotein lipase (LPL), perilipin (PLIN), O: Runt-

_SPP1 related transcription factor 2 (RUNX2), alkaline phosphatase

_ (ALPL), osteopontin (SPP1), collagen 1, alphat chain (COL1A1).

c °L1 0A1 PLIN _c°| 1 A1 Housekeeping gene analyzed was glyceraldehyde 3-phosphate
GA PDH = GA PDH dehydrogenase (GAPDH). Experiments were performed in du-
plicate. (G) In vivo ectopic bone formation by CD200* cells.

b war > SR ; > 7] CD200* BM MSCs were cultured in proliferation medium (Pas-
sage 1) before loading on MBCP ceramic discs that were
implanted subcutaneously in nude mice. Mice were killed after
4 weeks. Ceramic discs implanted subcutaneously without cells
served as negative controls. (i) Histology picture (Goldner
trichrome stain). Bone is stained green; ceramic has a shad-
owy white appearance. Bar = 50 p.m. (i) Back-scattered elec-
trons mode (BSEM) picture. Mineralized bone is gray with
typical osteocyte lacunae, ceramic is white and nonmineral-
ized tissue is black. Bar = 50 um. Micrograph i was acquired
with a Zeiss Axioplan 2 light microscope (Carl Zeiss,
Oberkochen, Germany) fitted with a 40X objective, a Kappa
OX-40 CDD camera, and Kappa imageBase software (Kappa
Opto-electronics, Gleichen, Germany). Micrograph ii was ac-

quired with a scanning microscope with backscattered electron
mode (SEM, LEO1450VP, Germany).

A
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decreased, if not collapsed (Figure 2C). After chondrogenic
induction, the mRNA expression (evaluated by quantitative RT-
PCR) of these markers was also clearly decreased and was
completely abolished for CD200 (not shown).

According to these results, CD200, a new marker for MSCs not
expressed on bone marrow hematopoietic cells in healthy individu-
als (this report and Moreaux et al?%), appeared to be one of the most
efficient markers to reproducibly purify native MSCs. The in vitro
adipogenic, osteogenic, and chondrogenic potential of CD200*
cells was similar to that observed for cells separated by adherence
or according to CD146 expression (Figure 2D,E). CD200" MSCs
also generated ectopic bone in vivo in nude mice (Figure 2F).
Whether MSCs exert their immunosuppressive activity through
CD200, a known immunomodulatory molecule, has to be studied.

In conclusion, we have established the extensive and specific
membrane phenotype of culture-amplified BM MSCs and started to
identify several specific surface markers to sort native MSCs.
Many other specific candidates remain to be tested (Table SS5).
Nonprotein markers such as SSEA-4 or GD2!417 have also to be
included. For transplantation, the advantage of native MSCs might
reside not so much in better differentiation and proliferation
potential as in improved homing capacity to different tissues.?’
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