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PML-RARa is the causative oncogene in
5% to 10% of the cases of acute myeloid
leukemia. At physiological concentrations
of retinoic acid, PML-RAR« silences RAR«
target genes, blocking differentiation of the
cells. At high concentrations of ligand, it
(re)activates the transcription of target
genes, forcing terminal differentiation. The
study of RAR« target genes that mediate

this differentiation has identified several
genes that are important for proliferation
and differentiation control in normal and
malignant hematopoietic cells. In this paper,
we show that the PML-RAR« fusion protein
not only interferes with the transcription of
regular RAR« target genes. We show that
the ID1 and ID2 promoters are activated by
PML-RAR« but, unexpectedly, not by wild-

type RAR«/RXR. Our data support a model
in which the PML-RARa fusion protein regu-
lates a novel class of target genes by interac-
tion with the Sp1 and NF-Y transcription
factors, without directly binding to the DNA,
defining a gain-of-function for the oncopro-
tein. (Blood. 2008;111:1634-1643)
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Introduction

Acute promyelocytic leukemia (APL) is characterized by an excess
of immature promyelocytes in the bone marrow that fail to
differentiate toward mature granulocytes. In approximately 98% of
the cases, the retinoic acid receptor-a (RARa) gene is fused to the
promyelocytic leukemia (PML) gene resulting in a PML-RAR«
fusion protein. The PML-RARa chimeric protein contains most of
the PML sequence and a large part of RAR«, including its DNA-
and nuclear hormone-binding domains. APL blasts can be forced to
terminally differentiate using pharmacological doses of all-trans
retinoic acid (ATRA). When treated with chemotherapy, APL
patients can be cured in approximately 40% of the cases. The
combination of ATRA with chemotherapy leads to a remarkably
high cure rate of approximately 90%,? and APL currently
represents the best prognostic group among the different forms of
leukemia. This treatment constitutes one of the first examples of
successful induction of differentiation of malignant cells yielding
significant clinical results.

The role of PML-RAR« in transformation and terminal differen-
tiation has been studied intensively in the past decade. PML-RAR«
was shown to act as a dominant oncogene, interfering with the
normal function of the unrearranged PML as well as the unrear-
ranged RARa protein. Expression of the fusion protein in imma-
ture hematopoietic cells induced a maturation block at the promy-
elocytic stage. Inoculation of PML-RARa—transduced bone marrow
cells into irradiated syngenic mice resulted in the development of
retinoic acid—sensitive leukemia.># Furthermore, PML-RAR« trans-
genic mice developed a myeloproliferative syndrome that pro-

gressed to overt leukemia in 30% to 90% of the animals after 6 to
12 months, depending on the promoter that was used.>”’

PML is a ubiquitously expressed protein that localizes to
nuclear substructures termed nuclear bodies. More than 50 protein
partners with various biologic functions colocalize with PML.8 In
APL cells, these nuclear bodies are disrupted and dispersed into
numerous small microspeckles.” PML has multiple tumor-
suppressor functions and is involved in growth control, replicative
senescence, and apoptosis.' PML ™/~ mice are prone to develop
tumors in response to various forms of stress. In addition,
PML-RARa transgenic mice develop leukemia much faster in a
PML~/~ background.!!

Retinoic acid receptors are transcription factors that activate
genes in a ligand-dependent manner. RARa binds to DNA as a
heterodimer with RXR proteins. In the absence of ligand, both
RARa/RXR and PML-RAR« bind corepressors such as N-Cor and
SMRT and recruit histone deacetylases leading to gene silencing.
In the presence of ligand, the corepressors are replaced by
coactivators, leading to transcriptional activation. However, PML-
RARa« releases the corepressors at much higher concentrations of
ligand compared with the unrearranged receptors. Since PML-
RAR«a competes with unrearranged receptors for the same DNA-
binding sites, the presence of the fusion protein results in dominant
silencing of retinoic acid receptor target genes at physiological
concentrations of ligand. At higher, supraphysiological concentra-
tions the fusion protein can still function as a transcriptional
activator releasing the corepressor complex and allowing the

Submitted April 2, 2007; accepted November 8, 2007. Prepublished online as Blood
First Edition paper, November 19, 2007; DOI 10.1182/blood-2007-04-081125.

S.W. and M.C.B.-R. contributed equally to this work.

The online version of this article contains a data supplement.

1634

The publication costs of this article were defrayed in part by page charge
payment. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

© 2008 by The American Society of Hematology

BLOOD, 1 FEBRUARY 2008 - VOLUME 111, NUMBER 3

20z aunr g0 uo 3senb Aq Jpd €91 0080£008UZ/L LBSOE L/YEIL/E/L L L/HPd-BloIE/POOIQ/ABU  SUOleDlgNdysE//:dRy WOl papeojumo]


https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2007-04-081125&domain=pdf&date_stamp=2008-02-01

BLOOD, 1 FEBRUARY 2008 - VOLUME 111, NUMBER 3

transcription of genes that are important for granulocytic differen-
tiation.!>15 The release of the differentiation block by high
concentrations of retinoic acid leads to terminal granulocytic
differentiation of the leukemic cells and the induction of hemato-
logic remissions in the patients. RARa target genes are not
restricted to genes that contain a consensus retinoic acid receptor—
binding site in their promoter. Liganded RAR« is able to repress
AP-1-mediated transcription.'®!®* PML-RAR« abnormally regu-
lates AP-1 activity as it stimulates AP-1-dependent transcription in
the presence of ligand, whereas unliganded PML-RAR« inhibits
AP-1-dependent transcription.'® In addition, RARa may interfere
with GATA-2—dependent transcription. Liganded RARa enhances
GATA-2—dependent gene transcription via direct protein-protein
interaction.?® This activity is retained in the PML-RARa fusion
protein.?! Furthermore, interaction of normal retinoid receptors
with the transcription factor Sp1 has been shown.?223 Together, the
data support a model in which PML-RARa« interferes with RARa
target gene expression in a dominant fashion, and that restoration of
target gene expression by high concentrations of ligand is impor-
tant for the induction of differentiation.

Apart from interference with the function of both parental proteins in
a dominant-negative manner, a gain-of-function for PML-RAR« is
suggested by various observations. PML-RARa may bind to DNA as a
heterodimer with RXR, but also independently from RXR as a
homodimer.>* It may bind to regular retinoic acid receptor-binding sites
consisting of a repeated consensus ((A/G)G(T/G)TCA) sequence, but
the required spacing between the 2 half-sites is less stringent for the
fusion protein. This allows the fusion protein to bind to a wider range of
DNA-target sequences compared with normal receptors.?>2° The impor-
tance of PML-RAR« as a transcriptional activator of differentiation-
inducing genes was shown by in vitro experiments. Expression of
PML-RAR« in the myeloid cell line U937 (that also expresses normal
retinoic acid receptors) enhanced their sensitivity to the induction of
differentiation by ATRA.?” In addition, forced expression of PML-
RARa, but not RAR«, in an ATRA-resistant APL cell line with
constitutive degradation of the chimeric protein restored ATRA sensitiv-
ity.”® Importantly, in APL patients who became resistant to differentia-
tion induction with ATRA during therapy, additional mutations were
found in the ligand-binding domain of the RAR« part of the PML-
RARa fusion protein, indicating an important role for the fusion protein
during the retinoic acid-induced differentiation of the leukemic cells.?
Finally, experimental mouse models in which various natural and
artificial RAR« fusion proteins were expressed also support a model in
which interference with the function of RARa and PML is important,
but in addition, they suggest that the PML-RAR« fusion protein exhibits
gain-of function characteristics, unique to the fusion protein.”* So far,
the mechanisms behind these observations remain largely unclear.

We have previously shown that the transcription factor inhibi-
tors ID1 and ID2 are up-regulated upon treatment with ATRA and
play a role in cell cycle arrest during APL differentiation.! In this
study, we investigated the mechanism by which these genes are
regulated in APL cells. We found that /D[ and ID?2 are regulated by
PML-RARa« through a novel mechanism, which is not shared with
normal RARa, defining an as-yet-unrecognized class of retinoic
acid—induced genes in APL.

Methods

Cell culture

NB4, U937, and U937-PRO cells (kindly provided by Dr P. G. Pelicci and
Dr F. Grignani) were cultured in RPMI 1640 medium (Gibco, Gaithersburg,
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MD); Hep3b cells, in IMDM (Gibco); and HEK293 cells, in DMEM
+ 2 mM L-glutamine. Media were supplemented with 10% FCS (Gibco).
ATRA was used at a final concentration of 107¢ M (Sigma-Aldrich, St
Louis, MO) and ZnSQy, at 100 M. Cycloheximide (ICN, Costa Mesa, CA)
was added 30 minutes prior to ATRA at 4 pg/mL.

DNA constructs and antibodies

The human /D] promoter was obtained from J. Campisi (University of
California, Berkeley). The ID2 promoter®? was cloned into the Xhol-
HindIIl sites of the pGL3-basic vector (Promega, Madison WI) after
amplification with the following primers: sense 5'-GTACGGTACCTC-
GAGTTGGGCATGGTTTGCAATA-3' and antisense 5'-GTACAGATCTA-
AGCTTGAAGCCCGAGCCCGGC-3'. RARE;-tk-luc,’* PML-RARaAR
and PML-RARaACC, PML-RARa, RARa, and RXR expression con-
structs® were as described. FLAG-PML-RARa was from A. Tomita®> and
was recloned into a cytomegalovirus (CMV) expression vector. /D]
promoter deletion/mutation fragments were constructed by polymerase
chain reaction (PCR) and cloned into the Xhol-HindlIl sides of PGL3-basic
(Promega). All constructs were sequence verified. The dominant-negative
NF-YA (YAm29) construct and anti-NF-YB polyclonal antiserum were
from R. Mantovani (University of Milan, Milan, Italy). pGEX-Spl was
from H. Rotheneder (University of Vienna, Vienna, Austria). Anti-Spl
(PEP-2), anti-NF-YA (H-209), anti-RARa (C-20), and anti-ID1 (Z-8)
antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA). Anti-PML rabbit antibody was as described.® Anti-FLAG (M2)
antibody was from Sigma. As a control in the chromatin immunoprecipita-
tion (ChIP) experiments, human IgG was used (Ivegam, Sanquin, The
Netherlands)

Northern blotting

Total cellular RNA was isolated by guanidium-isothiocyanate lysis and
centrifugation on a 5.7 M cesium chloride cushion. Total RNA (10 g) was
size-fractionated by 1% agarose-formaldehyde gel electrophoresis and
transferred onto Hybond N* nylon membranes (Amersham, Buckingham-
shire, United Kingdom). Filters were hybridized at 65°C overnight in
phosphate buffer (2N NaH,PO,, 7% sodium dodecyl sulfate [SDS], 1 mM
EDTA, pH 8, and 1% BSA). DNA probes were labeled with [*?P]a-dATP by
random primed labeling (Boehringer, Mannheim, Germany). After hybrid-
ization, filters were washed in 0.2 X SSC/0.2% SDS for 15 minutes at
65°C. Northern blots were hybridized to radiolabeled human /D1 or /D2
probes (kindly provided by Dr S. Stegman). As a control for equal loading,
filters were stripped and hybridized to a 777-bp Hindlll-EcoRI human
GAPDH fragment.

Transactivation studies

Cells were transfected using calcium-phosphate precipitates with 0.25 pg
pGL3-IDI or -ID2 promoter, 0.05 pg nuclear receptor expression vector,
0.1 pg Renilla vector (pRL-CMV; Promega), and 1 pg YAm29 expression
vector. The total amount of DNA was normalized to 1.4 wg for all
transfections using empty vectors. Cells were harvested 16 hours after
ATRA treatment using 100 pL Passive Lysis Buffer (Promega). Firefly
luciferase and Renilla luciferase activities were measured on a luminometer
(Lumat LB 9507; Perkin-Elmer/Applied Biosystems, Foster City, CA)
using Dual-Luciferase Reporter Assay System reagents (Promega).

Electrophoretic mobility shift assay

Nuclear extracts were prepared as described,’® and 5 g was incubated in a
total volume of 15 pL containing 1 g double stranded poly(dI)-poly(dC),
10 mM HEPES, 50 mM KCL, 1 mM DTT, 1 mM PMSF, 2.5 mM MgCl,,
10% (wt/vol) glycerol, 300 wg/mL BSA, and 0.5 ng of a labeled
double-stranded oligonucleotide probe: IDI 5'-CCGCCCATTGGCT-
GCTTTTGAACGT. To show specificity of binding, nonlabeled 100-fold
excess of double-stranded oligonucleotides was added to compete for
binding with the labeled probe. For this, either the /DI probe (self-
competition), a sequence not containing any CCAAT box (5'-TCAGAGT-
TCAAGGTTCTAGTCGCTGCGGC), or a NF-Y-binding site containing
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A B Figure 1. ID1 and ID2 are direct retinoic acid target
0,1 0,1 genes in NB4 cells. Quantitative PCR and Northern
5o D1 5o D2 blot analysis of NB4 cells treated with ATRA. mRNA
85 oo /_% 25 ) was isolated from NB4 cells and ID1 (A) and ID2 (B)
g § < 0,01 expression was determined using specific primers and
j(’ *ﬂ°; 0,001 2 f; probes by quantitative PCR (n = 4). Quantities were
- % / \/ Z % ./ normalized based on B-actin expression. To investigate
5 £ 0,0001 4 N 0,001 whether the induction of ID1 and ID2 was dependent on
- - intermediate protein production, cells were treated with
cycloheximide alone (4 wg/mL) or with the combination
0 4 8 24 48 72 9 0 4 8 24 48 72 96 of cycloheximide and ATRA (10-¢ M). Blots were
ATRA (hrs) ATRA (hrs) hybridized using radiolabeled ID1-specific (C) and ID2-
specific (D) probes. As a control for equal loading, blots
D ATRA chx chx+ATRA were stripped and rehybridized with GAPDH-specific

AIRA chx tALRA 0052 0052 0052 hrs probes.
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oligonucleotide from the CD10 gene (5'-ATCCCGACCAATGAGCG-
CACGGGGCCGGGT) was used.’” DNA-Protein complexes were resolved
on a 5% nondenaturing polyacrylamide gel in 0.5 X TBE buffer.

GST pull-down

GST fusion proteins were produced in E coli BL21 which were induced at
Agoo = 0.5 with 300 wM IPTG for 4 hours. Proteins were released
by sonication and loaded onto glutathione-agarose (Sigma-Aldrich) by
incubation at 4°C for 2 hours in lysis buffer (0.15 M NaCl, 50 mM Tris
[pH 8.3], 10 mM EDTA, 0.5% NP40, and protease inhibitors).
Pull-down was performed using in vitro—translated PML-RARa and
PML-RARaAcc (reticulocyte lysate; Promega) or rHSpl (Promega), by
2-hour incubation at 4°C. Beads were washed in lysis buffer and
subsequently resuspended in SDS-loading buffer.

Chromatin immunoprecipitation

DNA-protein cross-linking was done for 30 minutes at room temperature by
adding formaldehyde at a final concentration of 1% directly to the culture
medium. Cross-linking was stopped by the addition of glycine to a final
concentration of 125 mM. Cells were washed with ice-cold phosphate-
buffered saline, buffer B (10 mM EDTA, 0.5 mM EGTA, 0.25% Triton
X-100, 20 mM HEPES [pH 7.6]), and buffer C (1 mM EDTA, 0.5 mM
EGTA, 0.15 M NaCl, 50 mM HEPES [pH 7.6]) and resuspended in
incubation buffer (0.15% SDS, 1% Triton X-100, 0.15 M NaCl, 1 mM
EDTA, 0.5 mM EGTA, 20 mM HEPES [pH 7.6] and protease inhibitors) at
33 X 10° cells/mL. Chromatin was sonicated using the Bioruptor (Cosmo
Bio, Tokyo, Japan), at high intensity for 15 minutes with 0.5-minute
intervals. Insoluble material was removed by centrifugation at 4°C for
15 minutes. Supernatant (120 L) was incubated with 30 pL precoated
protein A/G plus agarose beads 50% vol/vol (Santa Cruz Biotechnology),
0.1% BSA, 36 nL 5 X incubation buffer, protease inhibitors and 2 to 5 pg
antibody (anti-NF-YA, anti-PML, anti-FLAG, or nonspecific IgG from
human serum) and rocked at 4°C for 16 hours. Beads were harvested by
centrifugation and washed twice with buffer 1 (0.1% SDS, 0.1% NaDOC,
1% Triton X-100, 0.15 M NaCl, | mM EDTA, 0.5 mM EGTA, and 20 mM
HEPES [pH 7.6]), once with buffer 2 (0.1% SDS, 0.1% NaDOC, 1% Triton
X-100, 0.5 M NaCl, 1 mM EDTA, 0.5 mM EGTA, and 20 mM HEPES [pH
7.6]), once with buffer 3 (0.25 M LiCL, 0.5% NaDOC, 0.5% NP-40, 1 mM
EDTA, 0.5 mM EGTA, 20 mM HEPES [pH 7.6]), and twice with buffer 4
(I mM EDTA, 0.5 mM EGTA, 20 mM HEPES [pH 7.6]). Chromatin
antibody complexes were eluted by the addition of 1% SDS and 0.1 M
NaHCO; to the pellet and incubated for 20 minutes at room temperature.
Cross-linking was reversed by the addition of NaCl (0.44 M final
concentration) and incubation of the eluted samples for at least 4 hours at
65°C. DNA was recovered by phenol-chloroform-isoamylalcohol extrac-
tion followed by chloroform-isoamylalcohol extraction and precipitated by
the addition of 0.1 volume of 1 M sodium acetate (pH 5.2), and 2.5 volumes
of ethanol. Precipitated DNA was dissolved in water, and input as well as

“. - e _“IDZ

immunoprecipitated DNA were analyzed using quantitative PCR for
genomic sequences from the IDI, ID2, RAR, and p21 promoter regions.38

Quantitative PCR

Quantitative PCR to measure ID1 and ID2 mRNA expression was
performed with the ABI/PRISM 7700 Sequence Detection system (ABI/
PE). As a reference gene, PBGD was used. The primer/probe sequences for
the IDI gene were as follows: sense 5'-GTTACTCACGCCTCAAG-
GAGCT, antisense 5'-GAGAATCTCCACCTTGCTCACC, and probe FAM
5'-CCCACCCTGCCCCAGAACCG; for ID2: sense 5'-GACTGCTACTC-
CAAGCTCAAGGA, antisense 5'-CGTGCTGCAGGATTTCCAT, and
probe FAM 5'-CCCAGCATCCCCCAGAACAAGAAGG. PCRs were done
in a 50-pL reaction mixture (1.25 U AmpliTaq Gold, 1 X buffer A [both
ABI/PE], 250 mM dNTPs [Pharmacia], and 5 mM MgCl,) for 10 minutes at
95°C followed by 45 cycles of 15 seconds at 95°C and 1 minute at 62°C.
Quantitative PCR following ChIP was done using Sybr Green PCR
(ABI/PE). Primer sequences for the /D] promoter were as follows; sense
5'-CACTGCGAGCAGGCACTAGAC and antisense 5-AGCCACA-
GCTTGTCTTT,; for the ID2 promoter: sense 5'-CTGTACTCTAT-
TTACCACCCCAGCTG and antisense 5'-GGCGTGGGCTTGGTTCTT;
for the RARB promoter: sense 5'-TTGGGTCATTTGAAGGTTAGCA
and antisense 5'-CACACAGAATGAAAGATTGAATTGC; for the p21
gene, sense 5'-GGCGGGGCGGTTGTAT and antisense 5'-AAG-
GAACTGACTTCGGCAGC.

Results

ID1 and ID2 are direct retinoic acid-responsive genes in
APL cells

Basic helix-loop-helix (bHLH) transcription factors and their
inhibitors, ID proteins, play crucial roles in the regulation of
differentiation in various cell types. We have shown that ID1 and
ID2 are up-regulated in APL cells upon exposure to ATRA.3!
Up-regulation of ID1 and ID2 mRNA was confirmed with qPCR
(Figure 1A,B), showing clear up-regulation within 4 hours after the
addition of ATRA. To investigate whether ID1 and ID2 were
directly up-regulated by ATRA, cells were treated with cyclohexi-
mide prior to the addition of ATRA to inhibit protein translation.
Both ID1 and ID2 mRNAs were up-regulated within 0.5 hours by
ATRA, regardless of the addition of cycloheximide (Figure 1C,D).
This indicates that both genes were directly up-regulated, without
intermediate protein production.
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Figure 2. The ID1 promoter is transactivated by PML-RARa but not by
RARa/RXR. (A) Hep3B cells were transfected with the 963-bp /D71 promoter-
luciferase reporter construct (ID7-luc) together with a control vector expressing
Renilla luciferase. In addition, vectors coding for the various proteins indicated in the
figure were transfected. Transactivation is expressed as arbitrary units and is
corrected for transfection efficiency measured by Renilla luciferase. Background
luminescence of the cells transfected with only the reporter construct without nuclear
receptors and in the absence of ATRA was set at 1. Cells were cultured for 16 hours
without ([ ) and with (Illl ) ATRA. Mean values and standard deviations from
3 independent experiments (+ SD) are shown. (B) To show transactivation by
unrearranged retinoic acid receptors, cells were transfected with the RARE3-tk-luc
vector, containing 3 bona fide RAREs. Mean values of 3 independent experiments
(* SD) are shown. (C) ID1 expression is increased by PML-RARw in the presence of
ATRA. The zinc-inducible PML-RAR« cell line U937-PR9 was grown in the absence
(left panel) or presence (right panel) of zinc for 16 hours. Cells were treated with
ATRA and harvested at the indicated time points. Proteins were size-fractionated by
SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Immunostaining was done
with anti-ID1 antibody.

The ID1 upstream promoter is transactivated by PML-RAR« but
not by RARa/RXR

To identify the regulatory DNA sequences through which the
induction of ID1 by retinoic acid was mediated, we analyzed the 5’
upstream promoter sequence in transactivation assays. A 963-bp

A -388
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fragment of the promoter, including the putative TATA box, was
cloned into a luciferase reporter construct. When expressed alone,
RARa, RXR, and PML were not able to transactivate the /DI
promoter both in the absence and presence of ATRA (Figure 2A). In
contrast, PML-RAR« transactivated the promoter more than
12-fold in an ATRA-dependent fashion. Surprisingly, the combina-
tion of RARa/RXR did not transactivate the promoter, both in the
absence and presence of ATRA. To verify that RARa and RXR
were expressed and functional, a control luciferase construct was
used containing 3 bona fide RAREs from the RARP promoter
(RARE;-tk-luc®). This construct was strongly transactivated in the
presence of ATRA through endogenous retinoic acid receptors
(Figure 2B left bars). This was further enhanced when RAR« and
RXR were cotransfected (Figure 2B right bars). Together this
shows that PML-RARa may regulate /D1 expression through the
upstream 963-bp promoter, whereas RARa/RXR cannot.

To test whether PML-RARa expression would result in ATRA-
dependent induction of the endogenous /DI gene, we used the
U937-PR9Y cell line that is stably transfected with a Zn?*-inducible
PML-RARa expression cassette.>* In PML-RARa—expressing
U937 cells, ATRA strongly induced ID1 expression (Figure 2C
right panel), in contrast to U937 cells that did not express
PML-RARa« (Figure 2C left panel).

Transactivation of the ID1 promoter is dependent on GC and
CCAAT box motifs

To determine the DNA sequences that are relevant for the observed
PML-RARa—dependent transactivation, we analyzed the 963-bp
upstream promoter construct of the /D] gene further. The consen-
sus RAR/RXR-binding sequence (RARE) consists of a repeated
(A/G)G(T/G)TCA sequence that is separated by 2 or 5 base pairs.
However, in the 963-bp ID] promoter, no consensus RARE was
found. As PML-RARa may bind to a much wider variety of DNA
sequences,??° we made luciferase constructs with different pro-
moter truncations. All the truncation mutants could still be
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Figure 3. The CCAAT and GC box in the /D1 promoter are required for PML-RARa—mediated transactivation. (A) ID1 promoter region showing the presence of
consensus Sp1- and NF-Y-binding sites. (B) Transactivation of ID1 promoter-luciferase constructs. Several deletion constructs were generated and transfected in combination
with RARa plus RXR, or with PML-RARa. Transactivation assays were performed as described in Figure 2. Mean values from 3 independent experiments (+ SD) are shown.
(C) To investigate the importance of the putative Sp1- and NF-Y—binding sites in the — 121-bp upstream promoter sequence of the /D1 gene for transactivation by PML-RAR«,

these sites were mutated in the context of the — 963-bp promoter fragment. Mutations

were introduced either alone, or in combination. Transactivation by PML-RARa was

performed as described in Figure 1. Sequences were mutated as follows: GC box: CCGCCC was replaced by CTATCC; NF-Y site: ATTGG was replaced by ACACG.
Transactivation was significantly lower in the promoter fragments with one mutated binding site in comparison with the wt promoter fragment (P < .01).
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Figure 4. NF-Y binds to the CCAAT box element from the /D7 promoter and is required for PML-RARa—mediated transactivation. (A) EMSA showing binding of NF-Y to
the putative NF-Y—binding site from the /D71 promoter. Hep3B nuclear extracts were incubated with a labeled DNA probe containing the NF-Y box from the /D1 promoter region.
A clearly shifted protein-DNA complex was seen (lane 1). Competition experiments were done with 100 X cold ID1 probe (lane 2) and with an unlabeled probe containing the
confirmed NF-Y—binding site from the CD10 gene promoter (lane 5). In addition, a sequence without any recognizable NF-Y—binding site was used for competition (lane 3).
Addition of anti-NF-YB antibody shifted the complex to a higher molecular weight complex (lane 4). Arrows indicate free probe (1), shifted DNA-protein complex (2), and the
supershifted DNA-protein-antibody complex (3). (B) To detect DNA-binding of NF-Y in intact cells, ChIP assays were performed using anti—-NF-YA antibodies. As a control, the
nonspecific IgG fraction from human serum was used. The y-axis shows the recovery (%) of ID1 or RARB sequences relative to the input. In U937 cells, NF-Y clearly bound to
the /D7 promoter (right bars), but not to the RARB gene (left bars). Mean values from 3 independent experiments plus or minus SD are shown. (C) To further show the
importance of NF-Y for the PML-RARa—mediated transcriptional activation of /D1, transfections (as described in Figure 2) were performed using the dominant-negative NF-YA
subunit (Yam29) and the 963 ID1 promoter construct. In the presence of YAm29, PML-RARa—mediated transcription was severely diminished (right bars). (D) To investigate
the importance of different domains of PML-RAR«, vectors encoding the DNA-binding—defective PML-RAR«AR mutant, and a mutant lacking the coiled-coil protein-protein
interaction domain of PML (PML-RAR«ACC), were used. In addition, a PLZF-RAR« expression construct was used. Transfections were performed as in Figure 2 using the 963

ID1 promoter construct; mean values of 3 independent experiments plus or minus SD are shown.

transactivated by PML-RARa (Figure 3B), including the smallest,
121-bp promoter construct. This construct does not contain any se-
quence that even remotely resembles a retinoic acid receptor-binding
site (Figure 3A). Analysis of the 121-bp promoter sequence for putative
binding sites for other transcription factors showed a perfect consensus-
binding site for the transcription factors NF-Y (CCAAT box) and Spl
(GC box). To test their relevance, we mutated these sites individually
and in combination in the context of the 963-bp promoter fragment.
Mutation of the GC box or the CCAAT box alone partially impaired
transactivation by PML-RARa, while deletion of the GC box and
the CCAAT box in combination almost completely abolished
transactivation (Figure 3C; raw Renilla and Firefly luciferase data
are given in Figure S1, available on the Blood website; see the
Supplemental Materials link at the top of the online article). This
indicated that transactivation of the /DI promoter by PML-RAR«
was dependent on the GC and CCAAT motifs.

Functional NF-Y is necessary for transactivation of the ID1
promoter by PML-RAR«

Spl and NF-Y are ubiquitously expressed transcription factors.
NF-Y is a trimeric protein complex consisting of the subunits
NF-YA, NF-YB, and NF-YC. All 3 subunits are necessary for the
complex to bind to the DNA.* Using real-time PCR, we confirmed
that Spl and all 3 NF-Y subunits were expressed in primary APL
cells (Figure S2). Binding of Sp1 to the promoter of /D] was shown
previously.*! Therefore, we tested whether NF-Y was able to bind
to the CCAAT site from the /D] promoter. Incubation of a
radioactively labeled DNA probe containing the CCAAT box with

cellular protein extracts resulted in a clear shifted complex (Figure
4A lane 1). This shift was competed by a 100-fold excess of
nonlabeled probe (Figure 4A lane 2) and by an excess of an oligo
containing the NF-Y-binding site of the CD10 promoter (Figure
4A lane 5*?), but not by an excess of probe lacking a NF-Y-binding
site (Figure 4A lane 3). When anti-NF-YB antiserum was added
(Figure 4A lane 4) the protein-DNA complex was supershifted,
identifying the DNA-binding protein complex as NF-Y. To further
test whether NF-Y is present on the endogenous /D] promoter, we
performed chromatin immunoprecipitation (ChIP) assays. Using
anti-NF-YA antibody, recovery of the IDI promoter sequences
from U937 cells was more than 70 times higher than recovery with
nonspecific IgGs (Figure 4B right bars). In the same experiment, no
enrichment was seen for the RAR3 promoter (Figure 4B left bars),
indicating that NF-Y is present on the endogenous /D] promoter
but not on the RAR[3 promoter.

A dominant-negative form of NF-YA has been described
(YAm29).#3 This mutated NF-YA subunit can still bind to the
NF-YB and NF-YC subunits, but is not able to bind to DNA,
preventing the formation of a functional trimeric NF-Y complex.
To investigate whether functional NF-Y was necessary for the
transactivation of IDI, the YAm29 mutant was tested in a
transactivation assay. Transactivation of /DI by PML-RARa upon
ATRA treatment was severely decreased in the presence of
dominant-negative NF-YA (Figure 4C). This effect was promoter
specific as YAm?29 did not influence transactivation of the RARf3
promoter construct (RARE;-tk-luc) by PML-RARa or RARw/
RXR (data not shown).
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Figure 5. The ID2 promoter is transactivated by A 10 B 12
PML-RAR«a but not by RARa/RXR. (A) Cells were c 9
transiently transfected with a 812—bp ID2-luciferase S 3 8 [0 -ATRA é 5 10 0 -ATRA
reporter construct (ID2-luc). Transfections and controls Sl 7 S g
were as described in Figure 2. Background lumines- B Q 6 | H-+ATRA £Q 8, HM+ATRA
cence of the cells transfected with only a reporter 2 F 5 | g_g— 6
construct (no nuclear receptor and no ATRA) was set at gsu S
1. Transactivation was measured after treatment with- o ® 4 5 0 4
out (CJ) and with () 10~ MATRA. Mean values from at go 3 L °
least 3 independent experiments plus or minus SD are 2 2
shown. (B) Dominant-negative NF-Y (Yam29) inhibits 1 _1 ﬁ Ei Ei Ei m d
the transactivation of the ID2 promoter construct by 0 N & N T & & ' & ’ B B < > & B
PML-RARe. Transfections were done as described in o ng_ Q@ & Q:\' «:\‘ Qy?' q)o‘° ng- §-q9
Figure 2; mean values of 3 independent experiments © @, <& & & h Vv @v%v@
plus or minus SD are shown. (C) Promoter region of the ] QY Q\/’\/ ] Q -
ID2 gene with putative Sp1- and NF-Y—binding sites.
C
i Eatisaclo
NEY TATA box
Wmoemﬁé?’mm@mm?@mccCAGCTAGC‘rCAGCAGocscmcGGcescmGAGcr

CDS->
TCAGGGCAGCCAGCTCCCTCCCGGTCTCGCCTTCCCTCGCGGTCAGCATG

Up-regulation of /D1 is dependent on PML-RAR« but does not
require the DNA-binding domain of the fusion protein

To test whether PML-RAR«a might transactivate the /D] promoter
without directly binding to the DNA, we used a PML-RAR«a
construct from which the DNA-binding domain was deleted
(PML-RAR/AR,3*). PML-RAR/AR has been shown to be unable to
transactivate a promoter containing a bona fide RARE. In contrast,
PML-RAR/AR retained the ability to transactivate the IDI pro-
moter (Figure 4D). Similar results were found when the transactiva-
tion assay was repeated in the myeloid cell line HL-60 (Figure S3).
This indicated that transactivation of the /D] promoter by PML-
RARa does not require direct binding of PML-RARa to the DNA.

PLZF-RARa is generated by a t(11;17) translocation that is
found in approximately 2% of the patients with APL. It contains the
same part of the retinoic acid receptor as PML-RARa. Similar to
PML-RARaq, this fusion protein may form homodimers with
DNA-binding capacity.** Interestingly, PLZF-RARa was not able
to transactivate the /D1 promoter, suggesting that the PML part of
PML-RARa is necessary for transactivation of the /D] promoter
(Figure 4D). When the coiled-coil domain of PML-RAR«a was
deleted (PML-RAR/ACC?34), it was no longer able to transacti-
vate the /D] promoter (Figure 4D). As this domain is involved in
protein-protein interactions, this suggested that PML-RAR« ho-
modimerization or interaction of PML-RARa with another protein
was necessary for the transactivation of /D].

The ID2 promoter is also transactivated by PML-RAR« but not
by RARa/RXR

To investigate whether /D2 was regulated in a similar manner as
ID1, we cloned the upstream promoter of /D2 (812 bp) into a
luciferase reporter plasmid. Similar to /D1, no consensus retinoic
acid receptor—binding site could be found in the /D2 promoter
sequence. Also comparable with /D], RARa, RXR, PML, PLZF-
RARa, and RARa/RXR did not transactivate the /D2 promoter,
whereas PML-RARa did (Figure 5A). Furthermore, transactiva-
tion of /D2 by PML-RARa was abolished in the presence of
dominant-negative NF-YA (Figure 5B). Inspection of the ID2
promoter sequence revealed 3 NF-Y and 5 Spl consensus-binding
sites (Figure 5C). Together, these data show that like /D1, ID2 may
also be transactivated by PML-RARa without direct DNA binding
of the fusion protein.

PML-RAR« directly interacts with Sp1

NF-Y and Spl have been shown to work in concert on many
promoters. Direct physical interaction between Sp1 and NF-YA has
been shown, indicating that these proteins may bind to adjacent
DNA-binding sites and form a complex that regulates transcrip-
tion.> We investigated whether PML-RAR« could physically
interact with Spl or NF-YA. GST-tagged, bacterially produced
NF-YA and Spl proteins were made, as well as in vitro—translated
(reticulocyte lysate) PML-RARa for GST pull-down experiments.
rhSpl was commercially available. Whereas a clear interaction was
observed between GST-NF-YA and recombinant Sp1 (Figure 6A),
in none of the conditions tested could we show a direct interaction
between NF-YA and PML-RARa. In contrast, an interaction
between PML-RARa and Spl was readily observed, whereas no
interaction was seen with nonloaded or GST-loaded beads (Figure
6A). GST-Spl was also able to capture PML-RAR/ACC, although
with a much lower efficiency than PML-RARa. This suggests that
the binding of PML-RAR is partly through the coiled-coil region
and partly through the RARa part of the fusion protein. This is in
agreement with earlier publications that have shown binding of
both PML and RAR« to Sp1.2%46

PML and PML-RAR« are present on the endogenous
ID1 promoter

To show the physical interaction of PML-RARa with the endoge-
nous /D] and /D2 promoters in intact cells, we performed ChIP
assays using PML-specific antibodies. The RAR[3 promoter, which
contains a well-defined RARE, served as a positive control. In NB4
cells, we found a clear enrichment for the RAR[3 promoter
(Figure 6B right panel). In contrast, in U937 cells that are
PML-RARa negative, no enrichment for the RAR[3 promoter
was seen (Figure 6B left panel), indicating that PML-RAR«
binds to the RARB promoter in NB4 cells. The ID/ gene was
also precipitated with anti-PML antibody in NB4 cells (Figure
6C right panel). However, this was observed not only in the
PML-RARa—positive NB4 cells, but also in the PML-RARa—
negative U937 cells (Figure 6C left panel). This indicates that in
U937 cells, unrearranged PML protein was present on the /D1
promoter. As the anti-PML does not discriminate between PML
and PML-RAR«a, we could not determine which of these
2 proteins was bound to the /D] promoter in NB4 cells. To
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investigate this further, we used a FLAG-tagged PML-RAR«
expression construct, allowing us to unequivocally identify
binding by the PML-RAR« fusion protein. HEK-293 cells were
transfected with FLAG-PML-RAR« (Figure 7A). As a negative
control, ChIP was performed using nonspecific IgGs. We
compared the presence of (FLAG-tagged) PML-RARa and
NF-Y on the 2 classical ATRA target genes RARB and p21, and
on /D] and ID2. Enrichment of all 4 promoters was found using
anti-FLAG antibody, indicating that PML-RARa was bound to
these 4 genes in intact cells (Figure 7A, compare top and middle
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Figure 6. PML-RARa binds Sp1 and binds to the
endogenous /D1 promoter. (A) To test binding of
PML-RARa to Sp1 and NF-Y, GST pull-down experi-
ments were performed. Empty beads and beads loaded
with GST or GST-NF-YA (left panels) were incubated
with in vitro—translated Sp1 (positive control) or in
vitro—translated PML-RARa. GST-Sp1 (right panels)
was incubated with in vitro—translated PML-RARa or
PML-RARaACC. Beads were washed and subse-
quently resuspended in loading buffer. Protein was
resolved on SDS-PAGE. Immunostaining was per-
formed with anti-Sp1 or anti-RARa antibody. Clear
mPML interactions between NF-YA and Sp1 and between
oice PML-RARa and Sp1 were observed. To show binding
of PML-RAR« to the endogenous RARB (B) and /D1
(C) genes, ChlIP assays were performed in PML-RARa—
positive NB4 cells and in PML-RARa—negative U937
cells. Cells were treated with ATRA for 30 minutes.
ChIP was done with anti-PML antiserum. As a control,
the nonspecific 1gG fraction from human serum was
used. The Y-axis shows the recovery (%) of ID1 or
RARB sequences relative to the input. Mean values
plus or minus SD of 4 independent experiments are
shown.

PML-RARa

PML-RARaACC

u937

rows). Using anti-NF-Y antibody, enrichment of the /D] and
ID2 promoters was found but no enrichment of RARf3 and p21,
indicating that NF-Y was present on /D] and ID2, but not on the
2 classical ATRA target genes RAR[B and p2l. To determine
whether the presence of PML-RARa and NF-Y on the different
promoters would be altered by the presence of retinoic acid,
ChIP assays were performed in the presence and the absence of
ATRA (Figure 7A middle and bottom rows). ATRA did not
influence the binding of NF-Y or PML-RAR« to these promot-
ers, showing that their binding is ligand independent.

B
Non-transfected
- ATRA
el
Flag-PMLRARa
- ATRA
G
T I"_
ID1/1D2
TATAX

Flag-PMLRARa
+ ATRA

Figure 7. Binding of PML-RAR« to the endogenous p21, RAR-B, ID1, and ID2 genes. (A) To show binding of PML-RAR« and NF-Y to the endogenous p21, RAR-B, ID1,
and /D2 genes, ChIP assays were performed. As anti-PML antibodies do not discriminate between the unrearranged PML protein and the PML-RAR« fusion protein,
FLAG-tagged PML-RAR« was used. Cells were transfected with or without FLAG-PML-RAR« and cultured in the presence or absence of 106 M ATRA. ChIP was performed
using anti-FLAG antibodies, anti-NF-YA antibodies, and control IgGs. The Y-axis shows the recovery (%) of ID1/ID2/p21 or RARB sequences relative to the input. Mean values
of 3 independent experiments (= SD) are shown. (B) Dominant-negative and gain-of-function model for PML-RARa. Genes that are regulated through a retinoic
acid-responsive element (RARE) may be bound by PML-RAR« (1). Competition with normal, unrearranged retinoid receptors results in a dominant-negative silencing of the
gene by PML-RARa in the absence of ligand. Addition of high-dose retinoic acid may reverse the silencing, allowing transcription. Sp1- and NF-Y-regulated genes may be
targeted by PML-RAR« through interaction with Sp1 (2). Tethering of PML-RAR« to these promoters renders them responsive to retinoic acid, representing a gain-of-function

for the PML-RAR« fusion protein.
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Together, these data show that there are 2 different mechanisms
by which PML-RARa may regulate the transcription of target
genes (Figure 7B). The first class of target genes consists of genes
that contain a retinoic acid response element in their promoter.
These genes are normally regulated by unrearranged retinoic acid
receptors and may be deregulated by PML-RARa in a dominant-
negative manner in the absence of ligand. In the presence of high
concentrations of ligand, their expression is restored. The second
class of target genes consists of genes that are not normally
regulated by retinoic acid receptors. Fusion of the RARa moiety to
PML renders these genes responsive to retinoic acid, which defines
anovel gain of function for the PML-RAR« fusion protein.

Discussion

The successful treatment of APL with high-dose retinoic acid has
shown that the differentiation block of the malignant cells can be
overcome, leading to terminal differentiation of the leukemic cells
and disappearance of the disease. As this is one of the first
examples of successful differentiation-induction therapy in cancer,
many studies focused on the molecular mechanisms that contribute
to the transformation to leukemia, and on the mechanisms that
mediate the retinoic acid-induced differentiation of the cells.
PML-RARa was shown to interfere with the expression of normal
RARa« target genes. RARa is an important modulator of granulo-
poiesis and acts either by direct binding to the DNA, or through
interaction with other transcription factors. In this report, we show
that PML-RAR« interacts with Spl and may interfere with the
expression of genes that are not normally regulated by retinoic acid
receptors. Previously, it was shown that both unrearranged PML*
and unrearranged RAR/RXR complexes*>?3 are able to interact
with Sp1. Therefore, the interaction of PML-RARa with Sp1 could
be mediated by the RAR« part as well as the PML part of the fusion
protein. Here we show that PML-RARa binds Spl and that this
binding is significantly less efficient when the coiled-coil domain is
deleted. The lack of response of the ID1 and the ID2 promoters to
RARo/RXR, PLZF-RARa, and PML-RAR/ACC (Figures 2,5)
suggests that the PML part of the fusion protein is essential for
regulating transcription.

We show that PML-RAR« physically interacts with Sp1 in the
absence of DNA (Figure 6). Roder et al have shown that NF-Y and
Sp1 interact physically in the absence of DNA,* and we obtained
the same result (Figure 6). This suggests that the PML-RARa/Sp1/
NF-Y complex may form before binding to DNA. Figure 3C
suggests that the PML-RARo/Spl/NF-Y complex still binds,
although less efficiently, to the ID1 promoter when one transcrip-
tion factor-binding site is mutated. Figure 4C shows that the
presence of a dominant-negative form of NF-Y abolishes transacti-
vation of the ID1 promoter by PML-RAR«a. We hypothesize that
this dominant-negative form of NF-Y disrupts the PML-RARa/Sp1/
NF-Y complex and thereby impairs binding to and transactivation
of the ID1 promoter. We propose a model in which PML-RAR« binds
to a DNA-bound Sp1-NF-Y complex, rendering the expression of these
genes sensitive to ATRA, and defining a novel gain-of-function for the
fusion protein (Figure 7B). In the ChIP experiments, we show that
unrearranged PML is recruited to the ID/ gene (Figure 6C). The
physiological meaning of this remains unclear as no effect of PML was
observed in the transactivation assays.

As Spl is involved in the transcriptional control of various
myeloid-specific genes,*”*® deregulation of its target genes may be
relevant in APL. For ID] and ID2, a role in myelopoiesis and in
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APL was described previously. Overexpression of ID1 or ID2 in
NB4 cells inhibits their proliferation and induces a GO/G1 arrest.’!
In addition, ectopic expression of ID1 in CD34* cells inhibited
eosinophil development, whereas neutrophilic differentiation was
enhanced. Expression of ID2 accelerated the definitive maturation
of myeloid cells.** Other genes may be targeted by a similar
mechanism as well. The promoter of the important retinoic
acid-responsive gene C/EBP was transactivated by PML-RARa,
but also lacks a consensus RARE within the tested region.’%!
Possibly, also this gene is (de)regulated by tethering of PML-
RARa to the promoter through protein-protein interactions rather
than by direct DNA binding.

Apart from the DNA-binding domain from RARa, the coiled-
coil domain of PML was shown to be important for optimal
induction of terminal differentiation by the fusion protein.>? This
suggested that homodimerization of PML-RARa is an important
feature of the fusion protein, but might also indicate that other
protein-protein interactions mediated through the PML part are
involved. Several alternative RARa fusion proteins occur at low
frequency (2% of the cases) in APL patients, in which the same part
of RAR« is fused to other proteins than PML (reviewed in Zelent et
al*). Common to the various RARa partner proteins is the
presence of a dimerization domain, suggesting that homodimeriza-
tion is an important property of these fusion proteins. However,
depending on the fusion partner, the sensitivity to retinoic acid
differs, suggesting a broader role for the RAR« partner protein than
just the provision of a dimerization domain. Specifically, PLZF-
RARa—positive leukemia appears to be more resistant to ATRA,
which has been explained by the recruitment of corepressors by the
PLZF part of the fusion protein that are not released upon treatment
with ATRA."5-3 This insensitivity could be reversed, as treatment
with a combination of ATRA and granulocyte colony-stimulating
factor (G-CSF) induced granulocytic differentiation in a synergistic
manner.> In addition, in transgenic mice, different types of disease
with different sensitivities to ATRA developed for the various
fusion proteins.”3% Furthermore, when RAR« fusion proteins were
made by the coupling of RAR« to artificial dimerization domains,
several characteristics of PML-RARa were recapitulated in vitro,
but in vivo these proteins induced leukemia with very low
efficiency.” Interestingly, when these fusion proteins were ex-
pressed in a PML ™/~ background, the animals still did not develop
leukemia efficiently, leading to the conclusion that the mere
combination of disruption of PML and dimerization of RARa does
not recapitulate the full oncogenic potential of PML-RAR«, and
that the fusion protein has gain-of-function characteristics. To-
gether, this showed that dimerization of RAR« is important but not
sufficient to reproduce the complete phenotype of PML-RARa.

It remains to be investigated whether PML-RARa recruits
corepressors to the promoters of Spl and NF-Y target genes. This
would lead to repression of gene expression in the absence of
ATRA, possibly contributing to transformation of the cells, similar
to the effect of PML-RAR« on regular retinoic acid receptor target
genes. So far, we did not observe important down-regulation of ID1
and ID2 mRNA in freshly isolated leukemia cells from APL patient
cells compared with non-APL acute myeloid leukemia cells,
suggesting that this is not the case (data not shown). However, as
IDI and ID2 expression in most leukemic samples was low, further
studies are required.

Potentially, RXR may also be present in the PML-RARa/Sp1/
NF-Y complex. RXR is an essential part of the PML-RAR«x
complex during transformation, and synergy has been shown
between ATRA- and RXR-specific agonist on transcriptional
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activation.?*26-36 Therefore, RXR-specific agonist may also affect
transcription of Spl and NF-Y target genes.

In summary, we define a novel, Spl- and NF-Y-dependent
mechanism by which the PML-RARa fusion protein interferes
with gene transcription. This implicates that PML-RARa (de)regu-
lates an additional class of genes that is normally not regulated by
retinoid receptors and defines a gain-of-function for the PML-
RARa« fusion protein.
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