
CLINICAL TRIALS AND OBSERVATIONS

Identification of genomic classifiers that distinguish induction failure in T-lineage
acute lymphoblastic leukemia: a report from the Children’s Oncology Group
Stuart S. Winter,1 Zeyu Jiang,2 Hadya M. Khawaja,3 Timothy Griffin,4 Meenakshi Devidas,5

Barbara L. Asselin,6 and Richard S. Larson3

Departments of 1Pediatrics, 2Biochemistry and Molecular Biology, and 3Pathology, The University of New Mexico Health Sciences Center, Albuquerque;
4Hematology/Oncology, Memorial Hospital of South Bend, IN; 5Children’s Oncology Group and University of Florida, Gainesville; 6Pediatric Hematology
Oncology, University of Rochester Medical Center and Golisano Children’s Hospital at Strong, NY

The clinical and cytogenetic features as-
sociated with T-cell acute lymphoblastic
leukemia (T-ALL) are not predictive of
early treatment failure. Based on the hy-
pothesis that microarrays might identify
patients who fail therapy, we used the
Affymetrix U133 Plus 2.0 chip and predic-
tion analysis of microarrays (PAM) to
profile 50 newly diagnosed patients who
were treated in the Children’s Oncology
Group (COG) T-ALL Study 9404. We iden-
tified a 116-member genomic classifier

that could accurately distinguish all 6
induction failure (IF) cases from 44 pa-
tients who achieved remission; network
analyses suggest a prominent role for
genes mediating cellular quiescence.
Seven genes were similarly upregulated
in both the genomic classifier for IF pa-
tients and T-ALL cell lines having ac-
quired resistance to neoplastic agents,
identifying potential target genes for fur-
ther study in drug resistance. We tested
whether our classifier could predict IF

within 42 patient samples obtained from
COG 8704 and, using PAM to define a
smaller classifier for the U133A chip, cor-
rectly identified the single IF case and
patients with persistently circulating
blasts. Genetic profiling may identify T-
ALL patients who are likely to fail induc-
tion and for whom alternate treatment
strategies might be beneficial. (Blood.
2007;110:1429-1438)
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Introduction

Acute lymphoblastic leukemia (ALL) is the most common form of
cancer among children and young adults. Approximately 15% of
patients express cellular and molecular features that are unique to
T-lineage acute lymphoblastic leukemia (T-ALL).1-4 Through the
use of increasingly dose-intensive therapy, combined with an
improved understanding of leukemic pathogenesis, disease-free
survival for children with ALL has improved over the past
3 decades.5 However, when matched for NCI-designated clinical
risk features of age, initial white blood cell count, and evidence of
extramedullary disease, patients with T-ALL are at an increased
risk of relapse compared with children treated for precursor
B-lineage acute lymphoblastic leukemia (B-ALL).6 In addition,
unlike many of the genetic biomarkers observed in patients with
precursor B-ALL, the recurring karyotypic aberrations identified in
T-ALL do not consistently correlate with outcome on modern
treatment schemas.2,7,8 For these reasons, the identification of
prognostically relevant karyotypic and clinicopathologic abnormali-
ties in T-ALL has been difficult to elucidate. The recent identifica-
tion of T-ALL risk groups, as defined by minimal residual disease
(MRD) status,6,9,10 activating NOTCH1 mutations,11-13 and re-
sponse to induction therapy,6,14,15 can be used to stratify treatment
approaches. Nevertheless, the mechanisms of drug resistance that
result in persistent disease and early treatment failure remain
poorly understood.

Gene expression microarrays are spotted with thousands of
25mer oligonucleotides, which correspond to transcripts of
known and hypothetical genes within the human genome. By

using microarrays for class discovery in hematopoietic malignan-
cies, it has been possible to identify novel pathways in
malignant transformation,16,17 explore heterogeneities among
study populations,18-21 and segregate patients into prognostically
relevant subsets.18,22 While numerous genes and genetic signa-
tures predicting disease course have been identified for patients
with acute myelogenous leukemia, precursor B-ALL, and
lymphomas,16,19,23-27 far fewer microarray studies have been
designed to specifically investigate expression profiles having
prognostic relevance in T-ALL. These limitations prompted us
to search for robust, genetically defined prognostic markers that
might allow the early identification of patients who might fail
treatment. In previous microarray and genetic profiling studies,
aberrant expression of T-cell–specific transcriptional factors
was shown to determine the stage of oncogenic arrest in
thymocyte development, as well as contribute to leukemogen-
esis,2,16,17,28 but did not consistently predict outcome across age
groups or treatment approaches.18,29

Because response-based therapy is becomingly increasingly
important in ALL risk stratification, the identification of the
genes that modulate drug resistance during induction is an
important first step in understanding the mechanisms of early
treatment failure. To gain insight into the genetic basis of
treatment failure in T-ALL, we performed microarray analyses
in 50 children and young adults who were treated in Children’s
Oncology Group (COG) 9404. We identified a genomic classi-
fier that can distinguish patients who fail induction therapy and
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validated this classifier in an independent study. Seven genes
were similarly upregulated in both the genomic classifier for IF
patients and T-ALL cell lines having acquired resistance to
neoplastic agents, identifying potential target genes for further
study in drug resistance. These results indicate that genetic
profiling may identify patients with T-ALL for whom induction
therapy is likely to fail, and for whom an alternate treatment
plan might be more beneficial.

Patients, materials, and methods

Study design, definition, case selection, and
induction schemas

For children and young adults with newly diagnosed T-ALL, COG Study
9404 was open to accrual from June 1, 1996, to September 10, 2001, and
enrolled 573 patients. Inclusion criteria included a diagnosis of T-ALL or
T-lineage lymphoblastic lymphoma, age between 1 and 21.99 years,
provision of written informed consent obtained in accordance with the
Declaration of Helsinki, and no prior therapy except for emergency
radiation or fewer than 48 hours of emergency prednisone. This study
received institutional review board approval at each participating institution
(Document S1, available on the Blood website; see the Supplemental
Materials link at the top of the online article). The study design and results
for COG T-ALL study 8704 have been reported elsewhere.1 Pretreatment
leukemia samples from the bone marrow or peripheral blood were obtained
from all patients through the COG 9400 or 9900 ALL Classification Study.
Independent confirmation of T-ALL at a central reference laboratory
required the presence of CD7, CD5, and/or CD2, or no coexpression of
myeloid antigens in cases having expression of CD7 alone. While
encouraged, cytogenetic analyses were not required for enrollment on either
treatment study. Bone marrow cryopreservation was performed in cases
having a sufficient sample size.

Using a retrospective, case-control design, samples from patients who
either failed to achieve remission (induction failure [IF]), who relapsed
within 4 years (relapse [RE]), or who remained in complete continuous
remission (CCR) for at least 4 years were randomly selected for study. The
induction drugs and response assessment time points for both studies are
shown in Table 1. Patients were defined as having IF when they had 25% or
more bone marrow blasts (M3) at day 22 or 43; at the discretion of the
treating physician, those with an M2/M3 marrow could receive 2 additional
weeks of therapy. Induction failure in COG 8704 was identified by the M3
marrow status at day 29. Relapse was defined as occurring when the
marrow was M3 or if leukemic blasts could be identified in CSF with 5 or

more mononuclear cells/�L at any time following first remission. CCR was
defined as a continuous absence of T lymphoblasts (� 5%) in the bone
marrow (M1) and CSF.

Sample preparation and expression profiling

Freshly acquired samples were enriched to more than 90% T-ALL blasts
with Ficoll Hypaque centrifugation and stored in liquid N2 until thawed
for RNA purification. Total RNA was extracted from 5.0 � 106 to 107

T-ALL cells using the RNeasyMini Kit (Qiagen, Valencia, CA).
Expression profiling at the Keck-UNM Genomics Resource was per-
formed using 2.5 �g total RNA for either a one-step approach to
synthesize biotin-labeled cRNA for COG 9404 samples, or a 2-step
approach for COG 8704 samples (Affymetrix, Santa Clara, CA). Using
either approach, 15-�g aliquots of fragmented, labeled cRNA were
hybridized to the U133 Plus 2.0 chip (50 COG 9404 samples), which has
54 675 probe sets, or to the U133A chip (42 COG 8704 samples), which
has 22 283 probe sets.16,25 Chips were scanned using an Affymetrix
microarray scanner (Hewlett Packard, Palo Alto, CA), while fluores-
cence intensity values were captured using GeneChip software (Af-
fymetrix). Microarray processing was performed using the Affymetrix
Microarray Analysis Suite (MAS version 5).30 Scan quality was assured
based on a priori quality control criteria, including visible microarray
artifacts. As recommended by others,31 chips were discarded and the
procedure repeated if the scaling factor was found to be more than 50,
the “present” calls were less than 20%, or the GAPDH/actin ratio was
more than 3. To maintain consistency in approach, only cryopreserved
samples were profiled.32 Of the 141 samples identified for analysis, 39
were excluded because of defects in the nucleic acids (poor quality RNA
or hybridization artifacts), and 10 cases were excluded because the
reason for death was unrelated to disease progression, the patient/family
withdrew consent, or the outcome data were incomplete, leaving
92 cases available for profiling. Approval from the ethics committee was
obtained (University of New Mexico Human Research Review Commit-
tee [HRRC] no. 03-183). We wished to further test our classifier, but
could not identify additional IF cases in the COG Cell Bank repository.
Our searches for testable IF microarrays in the GEO,33 ArrayExpress,34

or caARRAY35 databases were also unsuccessful.

Biocomputational and statistical methods for
microarray analysis

Statistical analysis of raw Affymetrix microarray data at a probe set level
was performed using robust multiarray average (RMA) normalization,
which corrects arrays for background using a transformation metric,
normalizes the data based on a normal distribution, and uses a linear model

Table 1. Cell lines, induction drugs, and study response assessment time points

COG 9404 COG 8704

Induction therapy

Doxorubicin*† 30 mg/m2 d1, 2 50 mg/m2 d1

Vincristine (max 2 mg)* 1.5 mg/m2 d1, d8, d15, d22 1.5 mg/m2 d1, d8, d15, d22, d29

Prednisone (max 60 mg)* 40 mg/m2 d1-21 40 mg/m2 d1-28

L-asparaginase*† — 10000 IU/m2 d27, d29, d31

Cyclophosphamide — 1000 mg/m2 d1; 600 mg/m2 d22

Cytarabine — 100 mg/m2 IVCI d22-26

Methotrexate 40 mg/m2 day 2 —

6-Mercaptopurine 50 mg/m2 d22-34‡ —

Age-adjusted IT meds D1, d8,§ d15, d22 D1, d15, d29

Response assessments

Peripheral blood blasts At d8 Through d14

Bone marrow response D22, d42‡ D29

— indicates not given.
*Jurkat cell line with acquired resistance to chemotherapeutic agents
†Sup T1 cell line with acquired resistance to chemotherapeutic agents.
‡If not M1 marrow on day 22.
§If CNS involvement was identified at diagnosis.
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to estimate expression values on a log scale.36 We used prediction analysis
of microarrays (PAM), which uses a nearest shrunken centroid classifier to
develop a predictive signature for 2 or more classes. As an improvement to
the standard nearest centroid classification, PAM also “shrinks” each of the
class centroids toward their overall mean, termed a “threshold,” to improve
the prediction accuracy. PAM also applies k-fold cross-validation inselect-
ing optimal number of genes by controlling both overall and individual
class cross-validation error rates.37 Hierarchic clustering was performed
with the R package “gplots” (http://cran.rproject.org/src/contrib/Descriptions/
gplots.html). Principal component analysis (PCA) was accomplished in R,
for which a 3-dimensional plot was generated by projecting data to the first
3 principal components; the image was developed in the R package “rgl.” To
search for gene network pathways, we searched BioCarta, KEGG, and Reactome
pathways at (http://hatch.health.unm.edu/Genotation) and Ingenuity Systems
software at (http://www.affymetrix.com/products/software/compatible/
pathway.affx).

Development of T-ALL cell lines with resistance to
daunorubicin and asparaginase

Jurkat and Sup T1 cell lines were developed for acquired resistance to
therapeutic doses of daunorubicin (DNR) and L-asparaginase (L-asp), and
represent the cortical and mature developmental stages of T-cell develop-
ment, respectively (David A. Estes, S.S.W., and R.S.L., Genetic alterations
determine chemotherapy resistance in childhood T-ALL: modeling in
stage-specific cell lines and correlation with diagnostic patient samples, in
press). Briefly, these cells were developed by maintaining initially chemo-
sensitive parental cell lines in incrementally increasing concentrations of
chemotherapeutic drugs for more than 6 months. Cells are continuously
maintained in chemotherapeutic agents. The DNR-resistant Jurkat and Sup
T1 cells have a 117-fold increase in the 50% inhibitory concentration to
DNR, from 20.6 nM to 2.419 �M, while the L-asp–resistant cells showed
increases in resistance to L-asp of 320-fold (0.003 IU/mL to 0.962
IU/mL) and 29-fold (0.042 IU/mL to 1.22 IU/mL), respectively. Jurkat
cells that had acquired resistance to DNR also developed a 310-fold (0.8
nM to 250 nM) resistance to vincristine and a 120-fold (3.1 nM to 380
nM) resistance to prednisone.

Results

Patient demographics, karyotypic aberrations, and
outcome characteristics

Our samples came from patients who were more likely to be males,
and tended to present with NCI high-risk features (Table 2), as
reported in other T-ALL studies.2,38,39 Overall, induction remission
rates for the COG 8704 and 9404 studies were 96.5% and 91.7%,
respectively. To develop our classifier, COG 9404 cases were used
as the training set, and COG 8704 cases were used as the test set. In
all cases, bone marrow samples were tested for karyotypic abnor-
malities and patient demographics were annotated for outcome-
related correlative features. For COG 9404 patients, cytogenetic
analyses showed a normal karyotype in 5 cases, deletions 6q
(n � 2) and 5q (n � 1), translocations t(4;8), t(10p;11q), and
t(12;22), nonspecific abnormalities (n � 6), and unknown results
(n � 36). Of the 50 patient profiles in this study, 6 did not achieve
remission during the induction phase of therapy, and 44 achieved
remission by day 42. Three of 6 IF patients had more than
1000 absolute blasts/�L at day 8 of induction. The median
end-of-induction bone marrow blast percentage was 61% (range:
29%-70%) in IF patients, and 1% (range: 0%-5%) in the RE and
CCR groups. Among patients achieving a first remission, 14 re-
lapsed within a median period of 245 days (range: 128 to
1669 days), and 30 have remained in CCR for a median period of
2200 days (range: 1833 to 2807 days).

Five of the 6 IF patients achieved remission with second-line
therapies consisting of nelarabine, either alone (n � 2) or in
combination with other agents (n � 1), cytarabine in combination
with etoposide (n � 1), or with an unknown combination of drugs
(n � 1). Three patients who achieved remission received alloge-
neic bone marrow transplantation; one patient died from posttrans-
plantation infectious complications, another died from persistent
disease, and one survives in CCR. In agreement with others, we
found no correlation between cytogenetic aberrations and NCI
features with early treatment failure.2,7,8

PAM distinguishes patients on COG 9404 for whom induction
therapy fails to achieve first remission

To identify a genomic classifier associated with treatment-
dependent prognosis, we used RMA-normalized expression pro-
files from 50 COG 9404 patients who were divided into IF, RE, and
CCR cohorts (Figure 1). Using PAM cross-validation (CV) least-
discriminate analysis (LDA) error rates to distinguish gene sets
having prognostic relevance for early treatment failure, we applied
the following filtering criteria: a shrunken centroid threshold of at
least 3.0, the lowest summative CV error rate across all outcome
parameters, and the smallest gene set size identified by the first
2 filtering criteria (Figure 1). We found that the most efficient
predictor of IF occurred at a shrunken centroid � of 3.25 (Table 3).
Rank-ordered gene-set sizes that were greater or lesser than this

Table 2. Clinical and genotypic characteristics of 92 T-ALL patients

Clinical trial microarray platform
COG 9404*:

U133 Plus 2.0
COG 8704†:

U133A

Clinical characteristics and demographics

Sample size, no. 50 42

Male/female, no. 39/11 36/6

Median age, y (range) 9.4 (2.0-18.2) 9.2 (1.8-19.2)

Median initial WBC �109/L (range) 187.5 (9.7-874.8) 97 (2.3-751.8)

NCI standard risk (CNS 2 or 3) 2 (1) 7 (3)

NCI high risk (CNS 2 or 3) 48 (20) 35 (15)

Ethnic status, no.

White, non-Hispanic 37 34

Black, non-Hispanic 9 5

Hispanic 3 3

Other 1 —

Patient outcome, no.

Induction failure 6 1

Postremission relapse within 4 y 14 16

CCR for greater than 4 y 30 25

Cytogenetic characteristics, no.

Normal 5 21

Unknown 36 6

t(11;14) — 2

t(8;14) — 2

t(5;17) — 1

t(1;7) — 1

del(6q) 2 4

del(5q) 1 1

Other aberrations 6 4

— indicates not done.
*Other aberrations (9404): 45,46,XX,add(7)(p15),t(12;22)(q13;q13); 46,XY,

del(10)(q?22q?24)[11]/46,XY[9]; 47,XY,�7 46,XX,t(10p;11q)/45,XX,t(10p;11q),
der(12)t(12p;17q), �17; 46,XX,t(4;8)(p14;q24.1) 49,XY,�6,�16,�18.

†Other aberrations (8704): 45,XX,�9,�11,inv(1)(p13;q42), �der(9)t(9;?)(p13;?),
�der(11)t(11;?)(q23;?); 46,XY,inv(8)(p23;q22); 46,Y,�X,�der(x)ins(x;?), �16,dup(2),
del(10),�der(16)t(1;16)z; 45,X,�Y.
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threshold resulted in summative error rates that were larger than
1.25, and were no longer considered in the identification of a
genomic classifier for IF. This prediction algorithm identified a
116-member genomic classifier in our COG 9404 training set that
distinguished all 6 IF cases from 44 patients who achieved a first
remission (Table 4; P � .001, 2-tailed Fisher exact test), but did not
distinguish RE from CCR cases.

Because hierarchic clustering and principal component analyses
can visually portray spatial distances in gene expression, albeit
with less accuracy than nonvisual approaches, we next performed
these analyses in our test set.40 We found that 5 IF cases clustered
adjacent to each other, and 1 IF case clustered within a cohort of
patients who have remained in CCR (Figure 2A). Interestingly, this
one case differed from other IF cases for age (age of 4 years versus
ages � 9 years). Adjacent to the IF cases, one RE case appeared to
have a similar genetic signature (Figure 2B). All IF, RE, and CCR
cases were retained within this signature during subsequent analyses.

We identified 116 genomic classifiers (Table 5; Table S1) with
diverse biologic roles. Because IF patients were the most geneti-
cally dissimilar from other outcome groups and to identify other
gene pathways, we evaluated expression differences between the
IF, RE, and CCR subsets. In comparison with RE and CCR cohorts,
analysis of mean expression fluorescence values showed that
37 probe sets were upregulated and 79 were downregulated in the
IF cohort. Identified within the 37 upregulated probes were genes
with overlapping function in cytokine-cytokine receptor (TGFB1,
TNFRSF18, and FLT3) and hematopoietic lineage differentiation
(FLT3 and CD34) signaling pathways, cell cycle control (CCND2),
and biosynthetic function (HK2, SPTLC2, and MGLL). In contrast,
identified within the 79 downregulated probes were genes control-
ling T-cell differentiation (CD2, CD8A, and IL4R), junctional

complexes (PARD3, MYH10, EPB41L2, and TJP2), and the G1/S
checkpoint (CDC25A and CDC2). To evaluate whether specific
molecular mechanisms might result in IF, we used the Ingenuity
Pathways Knowledge Database to perform a network analysis on
70 “focus genes” within our 116-member classifier (Figure 3).
Tissue growth factor beta 1 (TGF�1), large tumor suppressor,
homolog 2 (lats2), and v-yes-1 Yamaguchi sarcoma viral-related
oncogene homolog (lyn) were identified as upregulated and
functionally linked to CDC2 and CDC25 in arresting T-ALL
cells at the G1/S transition. Notably, genes involved with
apoptosis, proliferation, or drug metabolism were not identified,
suggesting that T lymphoblasts within the IF cohort were in a
state of cellular quiescence.

Comparison of genetic signatures between IF patients and
drug-resistant cell lines identifies genes that are commonly
altered in expression

Because selective resistance to cytotoxic therapy can provide
prognostically significant information,22,41,42 we developed cell
lines having acquired drug resistance to DNR and ASP (Table 1).
Nucleic acids from both Jurkat and Sup T1 cell lines, each of which
had developed resistance to DNR and ASP, were harvested and
hybridized to the U133 Plus 2.0 chip. Using a threshold of 1.5-fold
or higher change in expression, earlier shown to correlate closely
with quantitative reverse-transcription–polymerase chain reaction
(QRT-PCR) measurement of mRNA levels,43,44 we performed
intersection union testing between the DNR and L-asp–resistant
cell lines and our 116-member genomic classifier (Figure 4; Figure
S1). For genes that were commonly upregulated between the
drug-resistant cell lines and the IF cohort, 6 classifiers were shared
with both DNR-resistant cell lines, 3 classifiers were shared with
both L-ASP–resistant cell lines, and one probe (FLJ39602) was
shared between the DNR and L-ASP–resistant signatures (identi-
fied in Table 5 footnotes ‡ and ¶). Altogether, we identified 7 genes
that were commonly upregulated between the drug-resistant cell
lines and IF T-ALL cells (Table 6). We next developed box-plots
comparisons for each gene within the IF, RE, and CCR cohorts
(Figure 4Bi-viii). In all cases for upregulated genes, classifiers
associated with IF patients were significantly more highly ex-
pressed than for the RE and CCR. Among the 79 downregulated
probes, 2 classifiers were commonly shared with the DNR-resistant
cell lines, and 7 were shared with ASP-resistant Jurkat and Sup T1
(identified in Table 5 footnotes ‡ and §; Figure S1). As in the
upregulated gene set, classifiers that were downregulated within the
IF cohort were significantly underexpressed in comparison with the
RE and CCR patients (Figure S2A-I). Within the up- and downregu-
lated gene sets, 5 ESTs were identified with functions that are
currently unknown. Taken together, these data suggest that sets of
genes are commonly up- and downregulated among T-ALL cell
lines with acquired multidrug resistance and patients who did not
enter a first remission.

Table 4. Outcome class prediction using the 116-member genomic
classifier in 50 patients treated on COG 9404

COG T-ALL 9404 IF RE CCR

Actual outcome 6 14 30

Predicted outcome 6 0 23

PBBs indicates peripheral blood blasts � 1000/�L.

Table 3. Determination of gene set size using CV error rates

Shrunken
centroid � Gene set

CV error rates
Summative
error ratesIF CCR

3.00 202 0.00 0.28 1.28

3.25 116 0.00 0.23 1.23

3.50 63 0.03 0.24 1.27

3.75 48 0.06 0.22 1.28

4.00 14 0.17 0.31 1.48

A 116-member genomic classifier was selected on the basis of the following
filtering criteria: 1) threshold centroid of at least 3.0; 2) lowest summative CV error
rate for CCR, RE and IF groups; and, 3) for equivalent coefficient of variation (CV)
error rates, the smallest gene set size. RE � 1.00 in all cases.

Figure 1. Identification of a genomic classifier for induction failure among 50
T-ALL samples. PAM cross-validation was used to identify genes that could
distinguish patients who failed induction (. . . ) from those who maintained a CCR for
more than 4 years (—) and from those who relapsed after achieving remission (- -). A
centroid level of 0 corresponds to 54 675 genes, ESTs, and probe sets, while a
centroid level of 4.95 corresponds to 1 gene; the vertical bars indicate near-stable CV
error rates between shrunken centroid threshold � values of 3.00 to 4.00. Asterisk
indicates most efficient classifier.
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Cross-validation of the genomic classifier in an independent
T-ALL clinical trial identifies patients with progressive
disease and early treatment failure

A recurring concern with expression profiles developed for a
single study is that the genomic signature, however statistically
significant, does not predict outcome classes in a different
clinical trial.40 To address this concern, we next tested whether
our 116-member genomic classifier could predict IF cases
among 42 samples obtained from COG study 8704 study
patients (Table 7), who share many karyotypic and demographic
similarities with the cases tested from COG 9404 (Table 2). In
this test set, bone marrow samples from patients with newly
diagnosed T-ALL were hybridized to the Affymetrix U133A
chip. Because only 85 probes of our original 116-member
signature were shared between U133 Plus 2.0 and U133A chips,
we used an approach described by others29,44 and again used
PAM (� � 3.755) to constrain our classifier to the top 25
rank-ordered probes (identified as in Table 5). Interestingly, the
25-member classifier correctly identified 2 patients who contin-
ued to have a peripheral blood absolute blast count of more than
1000/�L for more than 14 days during the induction period
(Table 7). A persistence of peripheral blood blasts has been
previously reported as being prognostic of relapse in the 8704
study.14 The classifier correctly identified 1 of these 2 patients as
the only induction failure in this case-control cohort, and the
other patient with a slow disappearance of peripheral blood
blasts relapsed at day of treatment 103. As in COG 9404, our
classifier could not reliably differentiate between patients who
entered remission but later relapsed from those who remained in
a long-term CCR.

Discussion

Despite the recent identification that activating NOTCH1 muta-
tions11-13 response to glucocorticoids6 and MRD determi-
nants6,9,10 may allow risk stratification in T-ALL, there are no
markers that reliably predict early treatment failure. To address
this essential need, which is a necessary prerequisite in develop-
ing risk-adapted, individualized therapy, we identified a 116-
member genomic classifier that distinguished patients who do
not enter a first remission. To further explore the genetic
mechanisms that may be responsible for IF, we developed 4
T-ALL cell lines, Jurkat and Sup T1, each with acquired
resistance to DNR or ASP, and identified sets of genes that are
commonly up- and downregulated. While others have used array
profiling to investigate oncogenic pathways, molecular heteroge-
neity, and genomic features that distinguish T-ALL from other

hematopoietic neoplasms,18,19,28,45-47 we are the first to develop a
classifier that can predict IF, as well as guide further studies in
drug-resistant T-ALL.

Of the 90% to 97% of patients with T-ALL who achieve a
first remission, many are eventually cured of their disease,1,48,49

but among IF patients the mortality rate is nearly 90%.50 Unlike
other investigators developing array-based classifiers,18,28 we
were fortunate enough to have enough IF cases in this study to
set them apart from RE and CCR patients, allowing us to
highlight differences in these cohort-dependent expression
profiles. Several IF patients in this study achieved remission
with nelarabine, an ara-G prodrug that is efficacious against
refractory T-ALL.51-53 Unlike other S phase–specific DNA
nucleoside analogues, nelarabine selectively accumulates within
T-ALL cells, and through upregulation of solubilized Fas ligand
(sFasL) may induce S phase–independent cell death.54 The
clonotypic elimination of T cells through the Fas-Fas ligand
requires colocalization into lipid rafts55 along LAT56 and
RasGRP,57 which we identified at rank-order positions 1 and
7 (LAT), and 4 (RasGRP) within our signature (Table 3). Based
on these findings, and the observation that half of our IF patients
achieved remission with nelarabine, we postulate that quiescent
T lymphoblasts are subject to ara-G–induced S phase and non–S
phase–dependent cell death. Through the development of a
reliable genomic classifier for IF, we anticipate that specialized
microarray platforms, gene cards, or flow-based assays of
nucleic acid expression levels might further expedite the use of
alternate treatment strategies for IF patients.

In the supervised classification approach used in PAM,
support vector machine (SVM) and other computational tools,
an algorithm optimizes a classifier to best fit a set of available
cases for which a parameter has been predefined. Although
others have investigated whether expression profiles might
distinguish outcome in T-ALL,18,28,29 such studies based their
predictions on fluorescence intensity alone, or did not test
whether their classifier was predictive in an independent dataset
and microarray platform. To address these issues, we used PAM
to cross-validate the top 25 probes of our classifier in the COG
8704 test set, which was developed independently on a smaller
chip. This classifier correctly identified 2 patients who contin-
ued to circulate peripheral blood absolute blast counts of more
than 1000/�L for more than 14 days after starting induction.
Both the speed and initial response to induction therapy have
prognostic significance in T-ALL,146,58,59 and a persistence of
peripheral blood blasts during induction was significantly
associated with treatment failure in the 8704 study.14 One of
these 2 patients was diagnosed with IF, and while the other
achieved remission by day 29, he relapsed at day 103. Our

Figure 2. Cluster identification of patients for whom
induction has failed in T-ALL. (A) Hierarchic clustering
of samples (columns) and genes (rows) shows differential
expression for patients in the IF (red triangle), RE (black
square), and CCR (blue circle) cohorts. Red cells indicate
high expression, and blue cells indicate low expression.
(B) In 3-dimensional principal component analysis (PCA),
50 T-ALL samples were projected in the feature space
based on differential expression for 116 probes. Each
sphere represents a sample: red spheres denote IF
patients, black spheres indicate RE postinduction remis-
sion, and blue spheres show patients who have remained
in CCR for longer than 4 years. In panels A and B, the
patients for whom induction failed clustered together,
indicating a unique and shared genetic signature.
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cross-validation approach strengthens our findings that rare IF
patients can be accurately identified with expression profiling,
despite significant differences between induction regimens.

Although others have developed microarray signatures that
can distinguish postinduction RE from CCR groups in precursor
B-ALL,18,60,61 we and others have not been able to readily detect
differences in signatures between these outcome groups in
T-ALL. Using a variety of treatment protocols, array platforms,
and computational approaches for class discovery in T-ALL,

Yeoh et al,18 Chiaretti et al,29 and Ferrando et al28 have used
microarrays to develop biomarkers associated with risk for
relapse. Using the Affymetrix HG U95Av2 array
(12 600 probes) and SVM, Yeoh et al found 7 genes that could
distinguish between 8 RE and 26 CCR patients who were treated
on St Jude Treatment studies TXIIIA and B. However, other
investigators, including us, have not subsequently identified any
of these same genes in patients who received different treatment
approaches.28,29,62 While Ferrando et al did not study IF cases,

Table 5. Genomic classifiers (45 selected from 116) that distinguish IF patients with T-ALL

Rank order
Affymetrix
identifier Common name

GenBank
accession Gene description

Centroid
score*

1† 211005_at LAT AF036906 Linker for activation of T cells‡ �0.6998

2† 215772_x_at SUCLG2 AL050226 Succinate-CoA ligase, GDP-forming, beta§ �0.6042

3† 212459_x_at SUCLG2 BF593940 Succinate-CoA ligase, GDP-forming, beta§ �0.5550

4† 205590_at RASGRP1 NM_005739 RAS guanyl releasing protein 1§ �0.5363

5† 205831_at CD2 NM_001767 CD2 antigen (p50)§ �0.5248

6 235824_at — BF238392 Homo sapiens transcribed sequences‡¶ 0.5199

7† 209881_s_at LAT AF036905 Linker for activation of T cells‡ �0.4970

8 225386_s_at LOC92906 AI559701 Hypothetical protein BC008217§ �0.4181

9† 221526_x_at PARD3 AW452651 Par-3 partitioning defective 3 homolog§ �0.3911

10† 201518_at CBX1 NM_006807 Chromobox homolog 1 (Drosophila)§ �0.3727

11 224428_s_at CDCA7 AY029179 Cell division cycle associated 7§ �0.3614

12† 205449_at HSU79266 NM_013299 Protein predicted by clone 23627§ �0.3532

13† 221521_s_at Pfs2 BC003186 DNA replication complex GINS protein PSF2§ �0.3339

14† 203085_s_at TGFB1 BC000125 Transforming growth factor, beta 1¶ 0.3322

15† 215447_at TFPI AL080215 Homo sapiens mRNA; cDNA DKFZp586J0323 (from clone)¶ 0.3006

16† 221558_s_at LEF1 AF288571 Lymphoid enhancer-binding factor 1§ �0.2902

17 224553_s_at TNFRSF18 AF117297 Tumor necrosis factor receptor, member 18¶ 0.2890

18† 214835_s_at SUCLG2 AF131748 Succinate-CoA ligase, GDP-forming, beta§ �0.2870

19† 211031_s_at CYLN2 BC006259 Cytoplasmic linker 2¶ 0.2776

20 1555758_a_at CDKN3 AF213040 Cyclin-dependent kinase inhibitor 3 (CDK2)§ �0.2737

21† 209773_s_at RRM2 BC001886 Ribonucleotide reductase M2 polypeptide§ �0.2559

22† 212372_at MYH10 AK026977 Myosin, heavy polypeptide 10, nonmuscle§ �0.2492

23† 201719_s_at EPB41L2 NM_001431 Erythrocyte membrane protein band 4.1-like 2§ �0.2465

24† 208749_x_at FLOT1 AF085357 Flotillin 1§ �0.2428

25† 202705_at CCNB2 NM_004701 Cyclin B2§ �0.2362

26 238732_at COL24A1 AI631241 Collagen, type XXIV, alpha 1¶ 0.2356

27† 209714_s_at CDKN3 AF213033 Cyclin-dependent kinase inhibitor 3 (CDK2)§ �0.2201

28 1552623_at HSH2 BC025237 Hematopoietic SH2 protein¶ 0.2121

29† 218477_at TMEM14A NM_014051 Transmembrane protein 14A§ �0.2103

30† 206674_at FLT3 NM_004119 fms-related tyrosine kinase 3¶ 0.2045

31† 207016_s_at ALDH1A2 AB015228 Aldehyde dehydrogenase 1 family, A2§ �0.2013

32 244033_at C14orf145 AI937080 Chromosome 14 open reading frame 145§ �0.1972

33† 210115_at RPL39L L05096 Ribosomal protein L39-like§ �0.1940

Shared fold-dynamic classifiers

between IF patients and

drug-resistant cell lines

43 223380_s_at LATS2 AF207547 LATS, large tumor suppressor, homolog 2‡¶ 0.1590

46 210427_x_at ANXA2 BC001388 Annexin A2‡ �0.1556

52 218847_at IMP-2 NM_006548 IGF-II mRNA-binding protein 2‡¶ 0.1437

65 207761_s_at DKFZP586A0522 NM_014033 DKFZP586A0522 protein‡¶ 0.0865

66 213060_s_at CHI3L2 U58515 Chitinase 3–like 2‡ �0.0846

73 201590_x_at ANXA2 NM_004039 Annexin A2‡ �0.0714

81 227013_at LATS2 AI535735 LATS, large tumor suppressor, homolog 2 (Drosophila)‡¶ 0.0634

88 226550_at — AI672159 Homo sapiens cDNA FLJ39602 fis, clone SKNSH2005061‡¶ 0.0458

90 216203_at SPTLC2 U15555 Serine palmitoyltransferase, long chain base subunit 2‡¶ 0.0413

93 218618_s_at FAD104 NM_022763 FAD104‡¶ 0.0358

103 202954_at UBE2C NM_007019 Ubiquitin-conjugating enzyme E2C‡ �0.0207

109 230493_at — AW664964 Homo sapiens transcribed sequence ref:NP_060312.1; 	FLJ20489‡ �0.0080

— indicates not applicable.
*Rank order was determined by the absolute value (x) for each gene.
†Top 25 rank-ordered genomic classifiers common to the U133 Plus 2.0 and U133Achips.
‡Genes shared with drug-resistant cell lines having 1.5-fold up- or down-regulation (see Table S1 for complete list).
§Genomic classifiers down-regulated (n � 79) in IF patients.
¶Genomic classifiers up-regulated (n � 37) in IF patients.
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they reported that the aberrant activation of LYL1, HOX11, and
TAL1 results in leukemic arrest at specific stages of normal
thymocyte development, and that each of these biomarkers had
prognostic significance as well as a specific expression profile.
Interestingly, while we and others29 did not identify LYL,
HOX11, or TAL1 as having prognostic significance, we found
that upregulation of CD34, Cyclin D2, and FES within our IF

cohort was also overexpressed for patients who had LYL-
mediated oncogenic arrest and primary drug resistance.28 Chi-
aretti et al profiled expression signatures in 51 adults treated on
the Italian GIMEMA 0496 trial, and developed a 3-gene model,
consisting of AHNAK, IL-8, and CD2, that could distinguish
outcome.29 Our signature was largely dissimilar from that
developed by Chiaretti et al, but shared CD2 as having
prognostic importance. Although CD2 antigen expression has
been reported to be predictive of EFS in T-ALL,29,63,64 we and
others could not discriminate outcome in COG 8704 based on
CD2 expression.2 While it is tempting to compare the shared
identification of specific genes against other microarray studies,
important differences in study design, treatment effect, patient
demographics, and nonoptimized analysis of data may introduce
significant confounding factors to these correlates.1,37,65 For
these reasons, additional prospective testing of our and other
classifiers is necessary in optimizing the efficacy of microarrays
in risk assignment.

Several recent studies have suggested that cellular quies-
cence may be mechanistically linked with intrinsic drug resis-
tance to multiagent therapy for both solid and liquid tumor
cells.66,67 In support of this change in paradigm, we found that
T lymphoblasts in patients with IF may have a genetic profile
that suggests they resist multiagent therapy though cellular
quiescence. A number of genes that control the G1/S transition
in cell cycle progression, specifically TGF�1, LYN, and LATS2,
were upregulated (Figure 3). The Src family member lyn,
growth regulatory factor TGF
1, and putative tumor suppressor
LATS2 have been shown to suppress CDC2- and CDC25-
mediated cell cycle progression and apoptotic pathways in
human T cells and hematopoietic progenitors.68-70 Through
normal or deregulated signaling, we hypothesize that in IF
patients these growth modulators maintain T lymphoblasts in a
quiescent, nonproliferating state, in which the S phase–specific
interference of cell cycle progression by DNR, L-ASP, VCR, and
prednisone is either reduced or abrogated.

Relapse occurs with the acquired activation of cell survival
pathways, to include ATP binding cassette (ABC) transporters, or
enzymes that control nucleic acid biosynthesis, as described for

Figure 3. Network analysis of genetic pathways active in the IF cohort
shows a checkpoint arrest at G1/S transition. To identify biologic
function and interactions in the differentially expressed genes in the
116-member genomic classifier, we used Ingenuity Systems software to
map gene networks and identifying potentially dysregulated pathways in
the IF T-ALL cohort. Network analysis shows that TGF�1, LYN, and LATS2
interact with and down-regulate CDC2 and CDC25 to result in a arrest of
cell cycle progression at the G1/S checkpoint. Absent from this network
analysis are genes governing drug metabolism (p450 enzymes) or
apoptotic pathways. Each gene node represents a functional class, for
which an upward-pointing triangle indicates a phosphatase, a downward-
pointing triangle indicates a kinase, a vertical rectangle indicates a
G-protein–coupled receptor, a square indicates a cytokine, and a circle
indicates genes having other functions, to include surface receptors and
adhesive ligands. Nodes that are colored in red indicate relative up-
regulation, and nodes in green indicate relative down-regulation.

Figure 4. Intersection union testing of genes up-regulated between IF patients
and drug-resistant cell lines. (A) Differential expression between IF patients and
drug-resistant cell lines identified 7 up-regulated genes. (B) Box-plot distributions for
8 up-regulated genomic classifiers, including 2 probes for LATS2: (i) 207761_s_at
(DKFZ P586AD522), (ii) 216203_at (SPLTC2), (iii) 218618_s_at (FAD104), (iv)
218847_at (IMP-2), (v) 223380_s_at (LATS2), (vi) 226550_at (FLJ39602), (vii)
227013_at (LATS2), and (viii) 235824_at (EST). These data show differential
expression in genes with shared upregulation in the IF cohort, compared with the RE
and CCR subsets. Boxes indicate the range of data for each data set; vertical bars
with horizontal lines represent the error bars associated with each data set.
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DNR71-73 and ASP.74-76 To address the possibility that the genes
mediating acquired drug resistance might also be active in IF
patients, we developed Jurkat and Sup T1 T-ALL cell lines, each
with resistance to DNR and ASP, but also to VCR and PRED, as in
the case of DNR-resistant Jurkat cells. Our goal was to identify
whether overlap exists between intrinsic and acquired multidrug
resistance in T-ALL. Consistent with the findings of others, ABC
transporters and genes regulating asparagine biosynthetic enzymes
were not found to be specifically upregulated within our early
treatment failure group.77-79 We instead identified fold increases for
serine palmitoyltransferase (SPTLC2), monoglyceride lipase
(MGLL), LYN, and TGFB1, all of which may participate in cell
homing and migration. The role of cellular trafficking remains
poorly understood in lymphoblastic leukemia, but may contribute
to relapse in sanctuary sites or protection against cytotoxic
agents.67,80 In the context of enhanced mobility and tissue compart-
ment penetration, quiescent cells may not only escape S phase–
dependent cytotoxicity, but also may dynamically upregulate drug
efflux transporters and other pathways that are necessary for
survival.40,81,82

Using standard light microscopy, IF can be easily identified in
postdiagnostic bone marrow samples, but usually only after several
weeks of treatment. This time lag is problematic, as patients who
fail induction are likely to develop infectious complications and
become refractory to salvage therapy. Alternatively, a genomic
classifier might identify IF patients within a few days of diagnosis,
sparing them the toxicities of ineffective therapy, and provide
opportunities to pursue novel treatments, possibly in combination
with stem cell transplantation. When used in combination with
other risk-stratifying features, genomic classifiers may refine risk
group assignment in T-ALL49,83,84 and allow the development of
antineoplastic drugs that are not mechanistically tied to cell cycle
progression.
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Table 6. Differential expression between IF patients and drug-resistant cell lines identified 7 up-regulated genes

Affymetrix
code Drug Gene name Description GO function Locus

216203_at DNR SPTLC2 Serine palmitoyltransferase,

long chain base subunit 2

Biosynthesis 14q24.3-q31

218618_s_at DNR FAD104 FAD104 Hematopoietin/interferon class 3q26.31

*223380_s_at

*227013_at

DNR LATS2 LATS, large tumor suppressor,

homolog 2 (Drosophila)

Protein serine/threonine kinase

activity

13q11-q12

207761_s-at DNR DKFZ P586A0522 — S-adenosylmethionine-dependent

methyltransferase activity

12q13.13

†226550_at DNR, ASP — FLJ39602 — Xp11.3

218847_at ASP IMP2 IGF-II mRNA-binding protein 2 Translational attenuation;

morphogenesis; RNA binding

3q28

235824_at ASP EST Homo sapiens transcribed

sequences

— —

— indicates not applicable.
* Shared probesets for LATS2.
† Probeset shared between DNR and ASP-resistant cell lines.

Table 7. Cross-validation and class prediction using 25 top-ranked
genes in 42 patients treated on COG 8704

COG T-ALL 8704
PBBs

(after 14 days) IF RE CCR

Actual outcome 2 1 17 24

Predicted outcome 2 2 3 23

PBBs indicates peripheral blood blasts over 1000/�L.
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Erratum

In the article by Hochhaus et al entitled “Dasatinib induces notable hemato-
logic and cytogenetic responses in chronic-phase chronic myeloid leukemia
after failure of imatinib therapy,” which appeared in the March 15, 2007, issue
of Blood (Volume 109:2303-2309), Table 2 contains an incorrect parentheti-
cal percentage. The percentage rate of CHR for the imatinib-intolerant
disease cohort at 8 months should be 97%. (The number of patients
exhibiting CHR is accurate at 57.)
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