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Each infectious agent represents a unique
combination of pathogen-associated mo-
lecular patterns that interact with specific
pattern-recognition receptors expressed
on immune cells. Therefore, we surmised
that the blood immune cells of individuals
with different infections might bear dis-
criminative transcriptional signatures.
Gene expression profiles were obtained
for 131 peripheral blood samples from
pediatric patients with acute infections
caused by influenza A virus, Gram-nega-

tive (Escherichia coli) or Gram-positive
(Staphylococcus aureus and Streptococ-
cus pneumoniae) bacteria. Thirty-five
genes were identified that best discrimi-
nate patients with influenza A virus infec-
tion from patients with either E coli or S
pneumoniae infection. These genes clas-
sified with 95% accuracy (35 of 37
samples) an independent set of patients
with either influenza A, E coli, or S pneu-
moniae infection. A different signature
discriminated patients with E coli versus

S aureus infections with 85% accuracy
(34 of 40). Furthermore, distinctive gene
expression patterns were observed in pa-
tients presenting with respiratory infec-
tions of different etiologies. Thus, microar-
ray analyses of patient peripheral blood
leukocytes might assist in the differential
diagnosis of infectious diseases. (Blood.
2007;109:2066-2077)

© 2007 by The American Society of Hematology

Introduction

Different classes of pathogens trigger specific pattern-recognition
receptors (PRRs) differentially expressed on leukocytes.1,2 Leuko-
cytes are components of the innate immune system (granulocytes,
natural killer cells), the adaptive immune system (T and B
lymphocytes), or both (monocytes and dendritic cells). Blood
represents both a reservoir and a migration compartment for these
cells that might have been exposed to infectious agents, allergens,
tumors, transplants, or autoimmune reactions. Therefore, blood
leukocytes constitute an accessible source of clinically relevant
information, and a comprehensive molecular phenotype of these
cells can be obtained using gene expression microarrays. This
technology has already brought new perspectives in the diagnosis
and prognosis of cancer,3-5 and the analysis of gene expression
signatures in blood leukocytes has led to a better understanding of
mechanisms of disease onset and responses to treatment.6-8

Acute infections represent a major cause of morbidity and
mortality in the world,9 especially among children. Concomitantly,
our ability to identify infectious agents remains inadequate,
particularly if the organism is not present in the blood (or other
easily accessible site). These diagnostic obstacles can delay
initiation of appropriate therapy, which can result in unnecessary
morbidity and even death.10 Furthermore, recent outbreaks caused
by emerging pathogens9,11 and the increased risk of biologic threats
foster the need for improved diagnosis of infectious diseases,
especially in the acute setting.

We surmised that leukocytes isolated from the peripheral blood of
patients with acute infections will carry unique transcriptional signatures

that would, in turn, permit pathogen discrimination. To test this
hypothesis, we analyzed gene expression patterns in blood leukocytes
from patients with acute infections caused by 4 common human
pathogens: (1) influenza A, an RNA virus; (2) Staphylococcus aureus
and (3) Streptococcus pneumoniae, 2 Gram-positive bacteria; and (4)
Escherichia coli, a Gram-negative bacterium.

Patients, materials, and methods

Patient information

Blood samples were obtained from 29 patients with E coli infections (median
age, 2 months; range, 2 weeks to 16 years), 50 patients with S aureus infections
(median age, 7 years; range, 1 month to 18 years), 16 with S pneumoniae (median
age, 2 years; range, 2 months to 16 years), 36 with influenzaAinfections (median
age, 1.2 years; range, 2 weeks to 36 years), and 7 healthy controls (median age, 11
months; range, 4 months to 9.5 years). Patients were divided into training and test
sets according to age and antibiotic treatment (Tables 1-2).All subjects with acute
infections and their controls were recruited at Children’s Medical Center (CMC)
in Dallas, TX. The study was approved by the Institutional Review Boards
(IRBs) of the University of Texas Southwestern Medical Center and Baylor
Health Care System (IRB nos. 0802-447 and 002-141) and informed consent was
obtained for all patients. Microbiologic diagnosis was established by standard
bacterial cultures of relevant tissue specimens or blood and by direct fluorescent
antigen testing and viral cultures. All potentially eligible patients were identified
on a daily basis by the investigators from both the microbiology laboratory
database and inpatient admissions records. A second step was then undertaken to
confirm eligibility on the basis of history, clinical findings, bacterial and viral
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cultures, and immunofluorescence tests. Patients with suspected (by clinical
findings) or documented (by microbiologic tests) polymicrobial infections,
history of immunodeficiency, chronic disease, or receiving steroids or other
immunomodulatory agents were excluded. Patients were enrolled once a
confirmed microbiologic diagnosis was established. Systematic testing for the
presence of concomitant viral infection was initiated after the beginning of the
study and respiratory viral cultures were performed in 83 of 98 (85%) patients
with bacterial infections. Control samples were obtained from healthy individuals
scheduled to undergo elective surgical procedures and from healthy outpatient
clinic patients (Table 3).

Processing of blood samples

All blood samples were collected in acid-citrate-dextrose tubes (BD Vacutainer,
Becton Dickinson, Franklin Lakes, NJ) at the CMC and immediately delivered at
room temperature to the Baylor Institute for Immunology Research (Dallas, TX)
for processing. Peripheral blood mononuclear cells (PBMCs) from 3 to 4 mL
blood were isolated via Ficoll gradient and immediately lysed in RLT reagent
(Qiagen, Valencia, CA) with �-mercaptoethanol (BME) and stored at �80°C
(within 4-6 hours from the time of blood draw) in the same laboratory by the
same team to standardize the quality and handling of RNA samples.

Microarray assay

Total RNA was isolated using the RNeasy kit (Qiagen) according to the
manufacturer’s instructions, and RNA integrity was assessed by using an
Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA).

Affymetrix GeneChips. Double-stranded cDNA was generated from 2
to 5 �g total RNA, followed by single-round in vitro transcription with
biotin-labeled nucleotides, using the Affymetrix RNA transcript labeling
kits (Affymetrix, Santa Clara, CA). Biotinylated cRNA targets were
purified using the Sample Cleanup Module (Affymetrix), and subsequently
hybridized, according to the manufacturer’s standard protocols, to Af-
fymetrix HGU133A GeneChips (which contain 22 283 probe sets). Arrays
were scanned using an Affymetrix confocal laser scanner. Expression
results of a set of genes were confirmed by real-time polymerase chain
reaction (PCR). Details are shown in Document S1 (available on the Blood
website; see the Supplemental Materials link at the top of the online article).

Illumina BeadChips. These microarrays consist of 50mer oligonucle-
otide probes attached to 3-�m beads, which are lodged into microwells at
the surface of a glass slide. Samples were processed and data acquired by
Illumina (San Diego, CA). Targets were prepared using the Illumina RNA
amplification kit (Ambion, Austin, TX). cRNA targets were hybridized to
Sentrix Hu6 BeadChips (� 46 000 probes), which were scanned on an
Illumina BeadStation 500. The Illumina Beadstudio software was used to
assess fluorescent hybridization signals.

Raw data obtained for all 144 microrarray analyses are deposited in the
public gene expression database GEO (www.ncbi.nlm.nih.gov/geo/) (acces-
sion no. GSE6269).

Microarray data analysis

Microarray Suite, version 5.0 (MAS 5.0;Affymetrix) software was used to assess
fluorescent hybridization signals, to normalize signals, and to evaluate signal
detection calls. Raw signal intensity values for each probe set were analyzed by
algorithms in MAS 5.0. A maximum of 8 samples was assigned randomly for
hybridization and staining each run day to minimize technical variability.

Normalization of signal values per chip was achieved using the MAS
5.0 global method of scaling to the target intensity value of 500 per
GeneChip. Analysis was restricted to probe sets for which a present (P) call
was obtained in at least 75% of GeneChips in at least one patient class
evaluated (quality control probes). A gene expression analysis software
program, GeneSpring, version 7.1 (Agilent), was used to perform statistical
analysis, hierarchical clustering, and classification of samples. Nonparamet-
ric univariate tests (Mann-Whitney U or Fisher exact test) were used to rank
genes on the basis of their ability to discriminate between predefined groups
of patients. The ability of the top ranked (ie, classifier) genes to discriminate
the predefined class of pathogen was determined by the K-Nearest
Neighbors (kNN) method (Document S2 presents details).12

Results

Patient characteristics

We analyzed PBMCs from 29 patients with E coli infections, 50
patients with S aureus infections, 16 patients with S pneumoniae
infections, and 36 patients with influenza A infections. We chose
young patients because of fewer concomitant diseases and thera-
pies than possibly present in older adults. Patients with underlying
immunosuppression, receiving immunomodulatory therapy includ-
ing corticosteroids, or with significant chronic medical problems
were excluded. The median duration of hospitalization at the time
of blood draw was 3 days (range, 0-9 days) and the median duration
of symptoms was 7 days (range, 1-22 days). The clinical diagnoses
included acute respiratory infections, bacteremia, localized ab-
scesses, bone and joint infections, urinary tract infections, and
meningitis (Tables 1-2). Patients were treated according to standard
hospital protocols and, as such, antimicrobial therapy was promptly
initiated in the emergency department.

Step-wise data analysis strategy

To determine whether blood leukocytes isolated from patients with
acute infections carry gene expression signatures that allow
discrimination between pathogen type, a step-wise analysis was
conducted. (1) Statistical group comparison: differentially ex-
pressed genes were identified in pair-wise comparisons using the
nonparametric Mann-Whitney test. Hierarchical clustering ordered
the genes according to their expression levels, revealing reciprocal
patterns of expression between the 2 groups. (2) Sample classifica-
tion: genes capable of discriminating 2 groups of patients, that is,
classifiers, were identified through comparison of patient groups of
comparable age range and treated with similar classes of antimicro-
bials (training set). These genes were then evaluated within the
same set of patients in a leave-one-out cross-validation scheme. (3)
Independent validation of classifier genes: the same genes were
tested for their ability to classify an independent group of patients
(test set). The patients included in the training sets used for the
identification of the classifier genes were selected very carefully to
avoid potential confounding factors. After that careful selection,
the classifier genes (also described as transcriptional markers) were
then evaluated in a new group of patients that was heterogeneous
and therefore more representative of a realistic clinical setting (test
set). (4) Independent validation across microarray platforms and
chips: the results were then further validated in another set of
patients (40 new patients and 6 used in previous analyses) using a
different microarray platform (Illumina BeadChip or Affymetrix
U133plus2 chips).

Transcriptional signatures discriminate patients with influenza
A infection from those with bacterial infections

To identify genes differentially expressed between samples from
patients with either influenza or bacterial infections, 11 patients
with influenza A infections and 12 patients with E coli or S
pneumoniae infections were selected as a training set on the basis
of similar age groups and antibiotic class treatment. There were no
significant differences between the influenza A and the bacterial
infection training groups in median age (11 months [range, 1-20
months] versus 4 months [range, 2-23 months]; P � .22) or days of
hospitalization prior to sample collection (2 days [range, 1-2 days]
versus 2.5 days [range, 2-5 days], P � .06). All 11 patients with
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Table 1. Characteristics of patients in set 1 (training set)

Infection,
patient no. Age Ethnicity Sex Clinical disease

Bacteria vs
virus

E coli vs
S aureus Acute RI Antimicrobial therapy

E coli

12 5 mo Black M Bacteremia Fig. 1A-B Fig. 3A-B NA Ceftriaxone

13 5 mo White F UTI Fig. 1A-B Fig. 3A-B NA Ceftriaxone

31 3 mo Hispanic F UTI, bacteremia Fig. 1A-B Fig. 3A-B NA Gentamicin

34 16 y White F Pyelonephritis Fig. 1C Fig. 3A-B NA Gentamicin

48 2 mo White M UTI Fig. 1C Fig. 3C NA Ampicillin, ceftriaxone

57 3 mo Black F UTI, bacteremia Fig. 1C Fig. 3A-B NA Gentamicin

74 4 mo Hispanic F UTI, bacteremia Fig. 1A-B Fig. 3A-B NA Ceftriaxone

82 2 mo Hispanic M UTI Fig. 1C Fig. 3A-B NA Ampicillin, ceftriaxone

86 3 mo Hispanic M UTI Fig. 1A-B Fig. 3A-B NA Ceftriaxone

118 1.5 mo White M UTI Fig. 1C Fig. 3C NA Test 1 and 2

120 1.5 mo Hispanic M UTI Fig. 1C Fig. 3C NA Ampicillin, ceftriaxone

133 2 mo Hispanic M UTI Fig. 1C Fig. 3C NA Ceftriaxone

139 1 mo Hispanic M UTI Fig. 1C Fig. 3C NA Ampicillin, ceftriaxone

148 8 y Hispanic F UTI Fig. 1C Fig. 3A-B NA Ceftriaxone

151 1.5 mo Hispanic M UTI Fig. 1C Fig. 3C NA Ampicillin, gentamicin

152 2.5 mo Black M Bacteremia, meningitis Fig. 1A-B Fig. 3A-B NA Ceftriaxone, gentamicin

154 2 mo Hispanic M UTI Fig. 1C Fig. 3C NA Ceftriaxone

161 1.7 mo Hispanic M UTI Fig. 1C Fig. 3C NA Ampicillin, ceftriaxone

168 3 mo White F UTI Fig. 1C Fig. 3C NA Ceftriaxone

171 3 mo Hispanic F UTI Fig. 1C Fig. 3C NA Ceftriaxone

175 0.5 mo Hispanic F UTI, bacteremia Fig. 1C Fig. 3C NA Ceftriaxone

180 1 mo Hispanic M UTI Fig. 1C Fig. 3C NA Ampicillin, gentamicin

183 1.5 mo Hispanic M UTI Fig. 1C Fig. 3C NA Ampicillin, gentamicin, ceftriaxone

184 0.5 mo White F UTI, bacteremia Fig. 1C Fig. 3C NA Ampicillin, gentamicin

188 1.5 mo White M UTI Fig. 1C Fig. 3C NA Ampicillin, gentamicin, ceftriaxone

197 1.25 mo White M UTI Fig. 1C Fig. 3C NA Ampicillin, gentamicin

219 5 mo White F UTI, bacteremia Fig. 1C Fig. 3C NA Ceftriaxone

222 3 mo Hispanic F UTI, bacteremia Fig. 1C Fig. 3C NA Ceftriaxone, gentamicin

229 4 mo Hispanic F UTI, bacteremia Fig. 1C Fig. 3C NA Ceftriaxone

S aureus

5 10 y Hispanic M Osteomyelitis Fig. 1D Fig. 3A-B NA Cefazolin

24 3 y Black M Osteomyelitis Fig. 1D Fig. 3C NA Vancomycin, rifampin

30 15 y Black M Bacteremia Fig. 1D Fig. 3C NA Vancomycin

40 12 y White M Osteomyelitis, bacteremia Fig. 1D Fig. 3C NA Cefazolin

43 7 y Black M Hip abscess, bacteremia Fig. 1D Fig. 3C NA Vancomycin, rifampin

62 2 y White M Osteomyelitis Fig. 1D Fig. 3A-B NA Clindamycin

66 3 mo Black F Pneumonia Fig. 1D Fig. 3A-B Fig. 5C Vancomycin, gentamicin

67 7 y White F Osteomyelitis, bacteremia Fig. 1D Fig. 3A-B NA Vancomycin, rifampin

69 9 mo Hispanic M Lung abscess Fig. 1D Fig. 3A-B NA Vancomycin, cefazolin

70 15 mo White F Abscess Fig. 1D Fig. 3A-B NA Vancomycin

84 18 y Black F Abscess Fig. 1D Fig. 3C NA Cefazolin

88 11 mo Hispanic M Osteomyelitis, bacteremia Fig. 1D Fig. 3A-B NA Vancomycin

89 4 mo Black F Abscess Fig. 1D Fig. 3A-B NA Clindamycin

90 8 mo Black M Septic arthritis Fig. 1D Fig. 3A-B NA Oxacillin

150 9 y Black F Osteomyelitis, bacteremia Fig. 1D Fig. 3C NA Vancomycin, rifampin

179 12 y White M Endocarditis, bacteremia Fig. 1D Fig. 3C NA Oxacillin, gentamicin, rifampin

205 7 y Hispanic M Pneumonia, bacteremia Fig. 1D Fig. 3C Fig. 5C Vancomycin

206 1 y Hispanic F Abscess Fig. 1D Fig. 3C NA Clindamycin

208 10 y White F Osteomyelitis, bacteremia, pneumonia Fig. 1D Fig. 3C Fig. 5C Vancomycin, clindamycin, rifampin

216 10 y Hispanic F Osteomyelitis, bacteremia Fig. 1D Fig. 3A-B NA Vancomycin, rifampin

220 11 y Hispanic M Osteomyelitis, bacteremia Fig. 1D Fig. 3C NA Cefazolin, rifampin

221 6 y Black F Osteomyelitis, bacteremia Fig. 1D Fig. 3C NA Vancomycin, rifampin

224 10 y White M Osteomyelitis, bacteremia Fig. 1D Fig. 3C NA Oxacillin, rifampin

241 10 mo Black F Pneumonia, bacteremia Fig. 1D Fig. 3C Fig. 5C Vancomycin, rifampin

242 13 mo Black M Pneumonia, bacteremia Fig. 1D Fig. 3C Fig. 5C* Clindamycin

258 8 y White F Osteomyelitis, bacteremia Fig. 1D Fig. 3C NA Cefazolin

262 13 y Hispanic M Abscess, bacteremia Fig. 1D Fig. 3C NA Clindamycin

264 13 y Black M Septic arthritis Fig. 1D Fig. 3C NA Vancomycin, cefazolin, gentamicin

271 13 y Black M Osteomyelitis Fig. 1D Fig. 3C NA Clindamycin

281 3 y White F Osteomyelitis Fig. 1D Fig. 3C NA Clindamycin

315 3 y Hispanic F Cellulitis Fig. 1D Fig. 3C NA Vancomycin

S pneumoniae

9 4 mo White M Abscess Fig. 1A-B NA NA Cefazolin
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influenza A infections were receiving �-lactam antibiotics, as
compared with 10 of 12 in the bacterial infection group (P � .16).
There were no statistically significant differences in the relative
proportions of neutrophils, lymphocytes, and monocytes in PBMCs
from the 2 groups (Table S1).

Statistical group comparisons of patients with influenza A and
those with bacterial infections yielded 854 differentially expressed
genes (P � .01; Table S2), of which 394 were relatively overex-
pressed in influenza A infections and 460 were overexpressed in
bacterial infections. Patients with influenza A displayed a promi-
nent type I interferon (IFN) signature (Figure 1A), including genes
coding for antiviral molecules such as myxovirus resistance genes
(MX1, MX2); 2�-5�-oligoadenylate synthetases (OAS1, OAS2);
guanylate-binding protein 1 (GPB-1); and CIG5 (viperin, virus
inhibitory protein, endoplasmic reticulum-associated, IFN-induc-
ible). Genes regulating transcription and translation represent up to
25% of the 460 probe sets expressed at higher levels in the bacterial
infection group.

The kNN algorithm identified 35 genes that discriminated
patients with acute influenza infection from acute bacterial infec-
tions (Figure 2; Tables 4 and S3). Leave-one-out cross-validation of
this training set correctly classified 21 of the 23 samples (91%
accuracy) to either the influenza A or the bacterial infection groups
(Figure 1B).

The ability of the identified classifier genes to discriminate
influenza A from the bacterial infections was then validated with

independent sets of samples (test sets). The first test set of patients
included 7 new patients with influenza A and 30 patients with
bacterial infections (7 with S pneumoniae and 23 with E coli
infections). Patients were included in the test set without regard to
age or type of antibiotic treatment (age: influenza A, 4 years [range,
3 weeks to 36 years]; E coli, 2 months [range, 2 weeks to 16
years]). Predictor genes correctly classified 35 of the 37 samples
(95% accuracy; Figure 1C). One sample (INF48) was misclassified
and one sample was of indeterminate classification (INF120).

The 35 classifier genes were then evaluated in a second test set,
consisting of 7 patients with influenza A infection and 31 patients
with S aureus infection, yielding 87% accuracy in discrimination
(Figure 1D). Test sets were again selected without regard to age or
type of antibiotic treatment (age: influenza A, 4 years [range, 3
weeks to 36 years]; S aureus, 7 years [range, 3 months to 15
years]). Five S aureus samples were misclassified (INF62, INF70,
INF89, INF221, and INF242).

About one third of the patients with bacterial infection dis-
played elevated expression levels of IFN-related genes. This
signature, however, had limited effects on classification outcomes
because samples obtained from patients with bacterial infections
lacked the reciprocal expression signature characteristic of influ-
enza infection (underexpressed genes in influenza compared to
bacterial infection) and also in part because expression levels of
IFN-inducible genes were lower in samples from patients with
bacterial infections (Figure 1C). It is yet unclear as to whether

Table 1. Characteristics of patients in set 1 (training set) (continued)

Infection,
patient no. Age Ethnicity Sex Clinical disease

Bacteria vs
virus

E coli vs
S aureus Acute RI Antimicrobial therapy

25 2 mo Hispanic M Meningitis Fig. 1A-B NA NA Ampicillin, ceftriaxone

41 23 mo White F Pneumonia, empyema Fig. 1A-B NA Fig. 5C Ceftriaxone

64 10 mo White F Meningitis, bacteremia Fig. 1C NA NA Ceftriaxone, vancomycin

96 16 mo Hispanic M Pneumonia, empyema Fig. 1A-B NA Fig. 5C Ceftriaxone, azithromycin

113 7 mo Hispanic F Septic arthritis Fig. 1A-B NA NA Ceftriaxone, clindamycin

155 3 mo Hispanic M Meningitis Fig. 1A-B NA NA Ceftriaxone, vancomycin

261 13 y White M Meningitis Fig. 1C NA NA Ceftriaxone, vancomycin

268 3 y Hispanic M Pneumonia, empyema Fig. 1C NA NA Ceftriaxone, clindamycin

265 2 y White F Pneumonia, empyema Fig. 1C NA Fig. 5C Ceftriaxone, vancomycin

277 16 y White M Pneumonia, empyema Fig. 1C NA Fig. 5C Ceftriaxone, vancomycin

287 3 y White F Pneumonia, bacteremia Fig. 1C NA Fig. 5C Ceftriaxone, vancomycin

289 2 y Hispanic M Pneumonia, bacteremia Fig. 1C NA Fig. 5C Ceftriaxone, vancomycin

Influenza A

55 11 mo Hispanic M Respiratory distress Fig. 1A-B NA Fig. 5C Cefuroxime

87 19 mo White F Fever, hypoxia Fig. 1A-B NA Fig. 5C Cefuroxime

92 1 mo Hispanic F Fever Fig. 1A-B NA Fig. 5C Ampicillin, ceftriaxone

95 4 y Hispanic M Fever Fig. 1C-D NA Fig. 5C None

101 4 mo Hispanic M Fever, URI Fig. 1A-B NA Fig. 5C* Cefuroxime, oseltamivir

104 17 mo Hispanic M Seizures, fever, respiratory failure Fig. 1A-B NA Fig. 5C Ceftriaxone

105 4 y Hispanic F Fever, encephalopathy Fig. 1C-D NA Fig. 5C* Ceftriaxone, acyclovir, oseltamivir

107 1.5 mo Asian M Fever, lethargy Fig. 1A-B NA Fig. 5C Ampicillin, ceftriaxone

108 5 mo Hispanic M Fever Fig. 1A-B NA Fig. 5C Ceftriaxone

112 1 mo Hispanic M Fever, URI Fig. 1C-D NA Fig. 5C Ampicillin, gentamicin

114 18 mo Black F Respiratory distress, fever Fig. 1A-B NA Fig. 5C Cefuroxime, oseltamivir

115 20 mo White M Seizures Fig. 1A-B NA Fig. 5C Amoxicillin

116 2 y White M Fever, URI Fig. 1C-D NA NA Cefuroxime, clindamycin

117 24 y White F Fever Fig. 1C-D NA Fig. 5C None

128 11 mo Hispanic F Fever, hypoxia Fig. 1A-B NA Fig. 5C* Cefuroxime

132 6 mo White M Respiratory distress, fever Fig. 1A-B NA Fig. 5C* Oxacillin, tobramycin

259 3 mo Hispanic F Pneumonia Fig. 1C-D NA Fig. 5C None

266 36 y White F Fever, cough Fig. 1C-D NA NA None

For E coli (n � 29), median age, 2 months (range, 2 weeks to 16 years); S aureus (n � 31), median age, 7 years (range, 3 months to 18 years); S pneumoniae (n � 13),
median age, 1.9 years (range, 2 months to 16 years); and influenza A (n � 18), median age, 14 months (range, 3 weeks to 36 years).

RI indicates respiratory infection; NA, not applicable; UTI, urinary tract infection; URI, upper respiratory infection.
*These samples were characterized by a mixed signature.
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elevated levels of expression of IFN-inducible genes can be
attributed to a response to the documented bacterial infection
itself,13 or an undiagnosed or preceding viral infection.

Thus, transcriptional signatures of host response to influenza
infection and bacterial infection can be identified. These signatures
permit the discrimination between these causative agents.

Transcriptional signatures discriminate patients with E coli
infections from those with S aureus infections

To identify genes differentially expressed between patients with E
coli and S aureus infections, 10 patients per group were selected as
training set. There were no significant differences between the E

Table 2. Characteristics of patients in set 2 (test set) and platform used for analysis

Infection,
patient no. Age, y Ethnicity Sex Clinical disease Analysis Platform Antimicrobial therapy

Influenza

311 0.1 Hispanic M Influenza B, fever, URI Fig. 6C Illumina Sentrix Hu6 Ampicillin � ceftriaxone

320 0.04 Hispanic F Influenza B, fever, URI Fig. 6C Illumina Sentrix Hu6 Ampicillin � gentamicin

517 0.5 Hispanic F Influenza A, pneumonia Fig. 6A-B Affymetrix U133plus2 None

519 0.13 Hispanic F Influenza A, fever Fig. 6C Illumina Sentrix Hu6 None

524 6 Hispanic M Influenza A, fever Fig. 6A Affymetrix U133plus2 None

527 0.13 Black M Influenza A, fever Fig. 6C Illumina Sentrix Hu6 Ampicillin � ceftriaxone

530 0.38 Hispanic M Influenza A, fever, seizure Fig. 6C Illumina Sentrix Hu6 None

532 0.08 Hispanic F Influenza A, fever, cough Fig. 6A-B Affymetrix U133plus2 Ampicillin � gentamicin

533 11 White M Influenza B, fever, cough Fig. 6A-B Affymetrix U133plus2 None

536 2 Hispanic F Influenza A, fever, cough Fig. 6A-B Affymetrix U133plus2 None

540 0.08 Hispanic M Influenza A, fever, cough Fig. 6A-B Affymetrix U133plus2 Ampicillin � gentamicin

542 0.04 Hispanic F Influenza A, fever Fig. 6C Illumina Sentrix Hu6 Ampicillin � gentamicin

547 1.33 Black F Influenza A, encephalitis Fig. 6A Affymetrix U133plus2 Ceftriaxone � oseltamivir

549 13 Hispanic F Influenza B fever, syncope Fig. 6A Affymetrix U133plus2 Ceftriaxone � vancomycin � oseltamivir

553 1.5 White F Influenza A fever, URI Fig. 6A-B Affymetrix U133plus2 Oseltamivir

556 3.5 White F Influenza A fever, seizure Fig. 6C Illumina Sentrix Hu6 Ceftriaxone � oseltamivir

560 10 Black F Influenza B, encephalitis Fig. 6C Illumina Sentrix Hu6 Acyclovir

567 2 Hispanic F Influenza B, fever, URI Fig. 6A-B Affymetrix U133plus2 None

S aureus

305 4.5 Hispanic F MSSA, bacteremia, suppurative arthritis,

osteomyelitis

Fig. 6A Affymetrix U133plus2 Cefazolin

308 12 Black F MSSA, disseminated with pneumonia Fig. 6A-B Affymetrix U133plus2 Oxacillin � clindamycin

369 14 Black M MRSA disseminated Fig. 6A Affymetrix U133plus2 Vancomycin, rifampin

372 14 White M MRSA, bacteremia, osteomyelitis Fig. 6A Affymetrix U133plus2 Vancomycin, rifampin

374 1.75 Black M MRSA bacteremia, suppurative arthritis Fig. 6A Affymetrix U133plus2 Vancomycin

380 7.5 Black M MRSA osteomyelitis, suppurative arthritis Fig. 6A Affymetrix U133plus2 Clindamycin

458 12 Black M MRSA disseminated Fig. 6C Illumina Sentrix Hu6 Vancomycin � rifampin � linezolid

459 10 White F MSSA osteomyelitis, suppurative arthritis Fig. 6C Illumina Sentrix Hu6 Oxacillin � rifampin

465 13 White M MRSA, osteomyelitis, suppurative arthritis,

bacteremia

Fig. 6C Illumina Sentrix Hu6 Vancomycin

466 0.5 Black M MRSA, SST abscess Fig. 6C Illumina Sentrix Hu6 Clindamycin

472 0.08 White M MSSA, SST abscess Fig. 6C Illumina Sentrix Hu6 Cefazolin

475 1.33 Black M MSSA, suppurative arthritis Fig. 6C Illumina Sentrix Hu6 Nafcillin

477 6 Black M MRSA, bacteremia, suppurative arthritis Fig. 6C Illumina Sentrix Hu6 Clindamycin � rifampin

480 12 White M MSSA, bacteremia Fig. 6C Illumina Sentrix Hu6 Clindamycin � doxycycline

489 1.08 White M MRSA, SST abscess Fig. 6C Illumina Sentrix Hu6 Clindamycin

522 9.5 Black F MRSA, bacteremia, osteomyelitis Fig. 6C Illumina Sentrix Hu6 Vancomycin � rifampin

529 1.75 Black M MRSA bacteremia, pneumonia Fig. 6C Illumina Sentrix Hu6 Vancomycin � rifampin

535 0.58 Other F MSSA, suppurative arthritis Fig. 6C Illumina Sentrix Hu6 Cefazolin

537 9 Black F MSSA, bacteremia, osteomyelitis, suppurative

arthritis

Fig. 6C Illumina Sentrix Hu6 Oxacillin

S pneumoniae

96 1.33 Hispanic M Pneumonia, empyema Fig. 6A-B Affymetrix U133plus2 Ceftriaxone � azithromycin

265 2 White F Pneumonia, empyema Fig. 6A-B Affymetrix U133plus2 Ceftriaxone � vancomycin

268 3 Hispanic M Pneumonia, empyema Fig. 6A-B Affymetrix U133plus2 Ceftriaxone � clindamycin

277 16 White M Pneumonia, empyema Fig. 6A-B Affymetrix U133plus2 Vancomycin � ceftriaxone

287 3 White F Pneumonia, bacteremia Fig. 6A-B Affymetrix U133plus2 Vancomycin � ceftriaxone

289 2 Hispanic M Pneumonia, empyema Fig. 6A-B Affymetrix U133plus2 Vancomycin � ceftriaxone

471 2 White F Bacteremia, meningitis Fig. 6C Illumina Sentrix Hu6 Vancomycin � ceftriaxone

473 2.5 Hispanic M Bacteremia, pneumonia Fig. 6C Illumina Sentrix Hu6 Ceftriaxone

523 3 Hispanic M Suppurative arthritis Fig. 6C Illumina Sentrix Hu6 Cefazolin

For influenza (n � 18), median age, 11 months (range, 2 week to 13 years); S aureus (n � 19), median age, 7.5 years (range, 0.08 to 14 years); and S pneumoniae (n � 9),
median age, 2.5 years (range, 1.3-16 years).

MSSA indicates methicillin-susceptible S aureus; MRSA, methicillin-resistant S aureus; and SST, skin/soft tissue infection.
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coli and the S aureus infection training groups in median age (2
months [range, 3.5 months to 16 years] versus 12 months [range, 4
months to 10 years]; P � .06). Each group included 6 patients
treated with �-lactam antibiotics and 4 with other antibiotic classes.
Total peripheral leukocyte counts and the relative proportions of
the peripheral blood cell types between the 2 groups were not
significantly different (Table S1). The median number of days of
hospitalization prior to sample collection was 2 days for the E coli
group and 4 days for the S aureus group (P � .01), a difference that
may be accounted for by the time interval typically required for
definitive microbiologic diagnosis.

Statistical group comparisons yielded 211 genes with signifi-
cantly different expression levels (P � .01; Table S4; Figure 3A).
Expression levels of a selection of genes were independently
confirmed by real-time PCR (Figure S1; Method S1). A number of
genes overexpressed in S aureus compared to E coli are associated
with neutrophil activity, including chemoattractant molecules such
as CXCL1 (CXC chemokine ligand 1, GRO-1) and PPIB (cyclophi-
lin B).14,15 Furthermore, the matrix metalloproteinase 9 (MMP9)

plays an important role in neutrophil extravasation and migration16;
secretory granule proteoglycan 1 (PRG1) participates in packaging
of granule proteins in human neutrophils17; and ALOX5AP acti-
vates arachidonate 5-lipoxygenase and prolongs the capacity of
neutrophils to synthesize leukotrienes.18 Finally, neutrophils have
recently been identified as the main source of S100A8 and S100A9
(Calgranulin A and B, alias MRP 8 and 14) in a S aureus infection
model.19 These results suggest that “neutrophil activity” may, in
part, explain differences in levels of gene expression between
samples obtained from patients with E coli and S aureus infections.
Previous studies in patients with systemic lupus erythematosus
(SLE) demonstrated a “granulopoiesis signature” that was associ-
ated with the presence of low-density neutrophils that copurified
with mononuclear cells during density gradient centrifugation.6 In
line with these findings, low-density cells were found in PBMCs
isolated from 11 randomly selected patients with acute S aureus
infection (data not shown).

Thirty classifier genes that discriminate between the training set
of patients with E coli and S aureus infections were identified
(Figure 4; Tables 5 and S6). In leave-one-out cross-validation 19 of
20 samples were classified correctly (95% accuracy; Figure 3B).
One patient with a S aureus infection (INF89) was misclassified.
The classifier genes were validated with an independent set of
patients with S aureus (n � 21) and E coli (n � 19) infections,
which were again selected without regard to age or type of
antibiotic treatment (S aureus, 9 years [10 months to 18 years]; E
coli, 2 months [2 weeks to 5 months]). The 30 genes correctly
classified 34 of the 40 samples (85% accuracy; Figure 3C). Two
samples (INF175 and INF206) were misclassified and 4 samples
were indeterminate in their classification (INF168, INF220, INF281,
and INF315). The greater heterogeneity of clinical disease and

Figure 1. Discriminating patients with influenza A virus infection from patients with bacterial infections. (A) Hierarchical clustering of 854 genes obtained from
Mann-Whitney rank test comparison (P � .01) between 2 groups: influenza A (Inf A, 11 samples, green rectangle) and bacterial infections (red rectangle) with E coli (E.coli, 6
samples) or S pneumoniae (S.pn, 6 samples). Transformed expression levels are indicated by color scale, with red representing relatively high expression and blue indicating
relatively low expression compared to the median expression for each gene across all donors. The black bar indicates IFN-inducible genes (IFN), and the red bar indicates
genes involved in protein biosynthesis. Genes are listed in Table S2. (B) A supervised learning algorithm was used to identify 35 genes presenting the highest capacity to
discriminate the 2 classes (Tables 1-2 and S3). Leave-one-out cross-validation of the training set with 35 genes classified the samples with 91% accuracy. The predicted class
is indicated by light-colored solid rectangles (green for influenza A and red for bacteria). Two patients with bacterial infections were misclassified. (C) The 35 classifier genes
thus identified were tested on an independent set of patients (open rectangles), including 7 new patients with influenza A (green), 23 with E coli, and 7 with S pneumoniae (red)
infections. The 37 samples in this test set were classified with 95% accuracy (predicted class is indicated by light-colored rectangles). One patient was misclassified and one
patient was indeterminate in class prediction (gray box). (D) The 35 classifier genes identified in panel B were tested on an independent set of patients (open squares),
including 7 new patients with influenza A (Inf A), and 31 with S aureus infections. The 38 samples were classified with 87% accuracy.

Table 3. Set of healthy controls

Control no. Age Ethnicity Sex

INF 20N 11 mo Hispanic M

INF 19N 4 mo Hispanic M

INF 27N 10 mo White M

INF 25N 11 mo Hispanic F

INF 204 2 y White M

INF 12N 22 mo White M

INF 295 9.5 y Black F

The 7 healthy controls had a median age of 11 months (range, 4 months to 9.5
years).
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severity represented by the patients with S aureus infections may
contribute to the lower predictive accuracy for this group, although
no specific pattern of misclassification was evident.

Thus, these results demonstrate that blood leukocyte transcrip-
tional signatures distinguish disease etiology in patients with acute
infections caused by S aureus or by E coli. Furthermore, notable
functional convergence among discriminatory signatures were
identified; IFN-inducible genes were found among genes overex-
pressed in patients with influenza A, whereas genes associated with
neutrophils were expressed at higher levels in S aureus compared to
E coli groups.

Classifier genes discriminating samples from patients with
acute influenza A, E coli, S aureus, or S pneumoniae infections
show minimal overlap

We have defined sets of classifier genes that discriminate patients
with influenza A versus bacterial infections and patients with E coli
versus S aureus infections. To complete our panel of classifier
genes we performed additional pair-wise comparisons and identi-
fied sets of genes discriminating patients with S pneumoniae
infections. Comparison of E coli (n � 11) and S pneumoniae
(n � 11) infection groups yielded 264 significantly differently
expressed genes (P � .01) and 45 classifier genes (Figure S2A-B;
Tables S7-S8). Sample class was assigned correctly for 20 of 22
samples (91% accuracy) in leave-one-out cross-validation of the
training set. Comparison of S aureus (n � 12) and S pneumoniae

(n � 11) infection groups yielded 127 differently expressed
genes (P � .01) and 30 classifier genes (Figure S2C-D; Tables
S9-S10). Sample class was assigned correctly for 19 of 23
samples (83% accuracy) in leave-one-out cross-validation of the
training set.

The sets of classifier genes obtained for each pair-wise analysis
were systematically compared and found to be almost mutually
exclusive (Figure 5A). Furthermore, none of the 102 genes that
discriminated one bacterial species from the other was necessary to
distinguish influenza A from bacterial infections (Figure 5B). Thus,

Table 4. List of the 35 classifier genes distinguishing influenza A
from bacterial infections

Function, gene Significance

Influenza to bacteria

Response to virus

cig5 1.46 	 10�5

DNAPTP6 4.52 	 10�6

IFI27 4.52 	 10�6

IFI35 0.00033

IFI44 0.00023

IFI44 0.00015

OAS1 6.52 	 10�5

Immune response

BST2 4.08 	 10�5

G1P2 0.000101

LY6E 8.28 	 10�6

MX1 6.52 	 10�5

Antiapoptosis

SON 0.00067

Cell growth or maintenance

TRIM14 4.08 	 10�5

Miscellaneous

APOBEC3C 2.35 	 10�7

C1orf29 0.00015

FLJ20035 4.08 	 10�5

FLJ38348 0.00128

HSXIAPAF1 4.52 	 10�6

KIAA0152 2.48 	 10�5

PHACTR2 9.34 	 10�8

USP18 1.46 	 10�5

ZBP1 5.41 	 10�7

Bacteria to influenza

Translational elongation

EEF1G 4.52 	 10�6

EEF1G 2.35 	 10�6

Regulation of translational initiation

EIF3S5 9.34 	 10�8

EIF3S7 2.35 	 10�7

EIF4B 1.16 	 10�6

Protein biosynthesis

QARS 5.41 	 10�7

RPL31 4.52 	 10�6

RPL4 2.35 	 10�7

Regulation of transcription

PFDN5 5.41 	 10�7

Cell adhesion

CD44 2.35 	 10�7

Metabolism

HADHA 4.08 	 10�5

PCBP2 9.34 	 10�8

Miscellaneous

dJ507I15.1 6.52 	 10�5

Genes are grouped functionally based on ontologies, and levels of significance
are shown. Full details are available in Table S3.

Figure 2. Expression levels of the 35 classifier genes discriminating patients
with influenza A infection from patients with bacterial infections. Scaled gene
expression values (average difference intensity) are plotted for the 35 classifier
genes represented in Figure 1B that discriminate between samples from patients with
influenza A (11 samples, green squares) and bacterial infections (6 samples with E
coli and 6 samples with S pneumoniae, red diamonds). Each plot represents one
sample, lines represent median expression.
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we find that multiple infectious disease etiologies can be distin-
guished using independent sets of transcriptional signatures.

Distinct expression patterns in patients with acute respiratory
infections caused by different pathogens

Next, we examined gene expression patterns in a mixed cohort
of patients presenting with the same clinical manifestations.

Because lower respiratory infections represent the most com-
mon infection leading to hospitalization, we focused our
analysis in this particular group of patients. Sets of classifier
genes identified throughout this study (Figure 5A-B) were
merged and used to generate expression patterns in the group of
patients with either influenza or bacterial infections who
presented with clinical evidence of lower respiratory infection
(27 samples listed Table 1; used in Figure 5C). Seven samples
collected from healthy volunteers were used as a reference
(Table 3). Hierarchical clustering of genes and samples identi-
fied 4 prototypical expression signatures; healthy controls were
clearly distinguishable from all the infectious disease groups
based on PBMC expression profiles. This finding is in itself
remarkable because none of the training sets used to generate
the classifiers included samples from healthy volunteers. A
second signature was associated with samples from patients
with influenza A infection (including IFN-inducible genes) and
was clearly different from a third signature, which characterized
infections caused by S aureus and S pneumoniae (including
neutrophil-associated genes). Distinctions between these 2
Gram-positive bacteria were minimized by the overt dominance
of signatures differentiating the 3 major classes of samples.
Interestingly, 4 samples belonging to the influenza A group and
one from the S aureus group were characterized by a fourth
signature, which combined elements of the previous ones
(IFN-inducible and neutrophil-associated genes: Figure 5C,
indicated by the asterisk). This finding suggests one of at least 2
possibilities: (1) the mixed signatures arise as the result of
coinfections that could not be detected by routine diagnostic
methods, or (2) the analysis of PBMC transcriptional signatures
can reveal the existence of distinct patient subgroups. Further
review of the medical records of the 5 patients with mixed
signature, identified 3 patients with influenza (nos. 101, 128, and
132) who had radiologic evidence of pneumonia and white
blood cell differential counts with 11%, 16%, and 28% bands,
respectively. Thus, although not proven, the evidence suggests
the possibility of bacterial coinfections in these 3 cases. A larger
patient cohort will be necessary to investigate these possibilities
and identify potential clinical implications.

These results clearly demonstrate that discriminative blood
leukocyte transcriptional patterns that identify the different micro-
bial pathogens can be obtained in patients presenting with similar
clinical findings.

Figure 3. Discriminating patients with S aureus infections from patients with E coli infections. (A) Hierarchical clustering of 211 genes obtained from Mann-Whitney rank test
comparison (P � .01) between 2 groups: Staphylococcus aureus (S aureus, 10 samples, red rectangle) and Escherichia coli (E coli, 10 samples, blue rectangle) infections. Transformed
expression levels are indicated by color scale, with red representing relative high expression and blue indicating relative low expression compared to the median expression for each gene
across all donors. Genes are listed in Table S4. (B)Asupervised learning algorithm was used to identify 30 genes presenting the highest capacity to discriminate the 2 classes (Table S6).
Leave-one-out cross-validation of the training set with 30 classifier genes grouped the samples with 95% accuracy. (C) The 30 classifier genes thus identified were tested on an
independent set of patients (open rectangles), including 21 new patients with S aureus and 19 with E coli infections. The 40 samples in this test set were predicted with 85% accuracy
(predicted class is indicated by light-colored rectangles). Of these 40 samples, only 2 were misclassified, whereas the class of 4 other samples could not be determined (open rectangles).

Figure 4. Expression levels of the 30 classifier genes discriminating patients
with E coli infections from patients with S aureus infections. Scaled gene
expression values (average difference intensity) are plotted for the 30 classifier
genes represented Figure 3B that discriminate between samples from patients with E
coli (10 samples, blue squares) and S aureus infections (10 samples, red diamonds).
Each plot represents one sample, lines represent median expression.
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Results can be reproduced in a distinct set of samples
and across microarray platforms

Our study design includes a training set for the identification of
classifiers (Figure 1B, influenza versus bacteria; n � 23 samples)
and 2 test sets to independently validate our findings (Figure 1C,
influenza versus bacteria; n � 37 samples; and Figure 1D an
additional 31 patients infected with S aureus). These data, obtained
from a total of 91 patients, were generated using Affymetrix
U133A GeneChips. To take data validation one step further to
unequivocally confirm our findings, we carried out a similar
analysis on additional sets of patients using different microarray
platforms. PBMC expression profiles from a new set of patients
were analyzed using the most recent version of Affymetrix
GeneChips (U133 plus 2.0); 16 new patients with acute influenza
and bacterial infections were recruited and the remaining RNA
from 6 patients with bacterial infections used in a prior analysis

was relabeled. Infections caused by S aureus or S pneumoniae
could again be distinguished almost perfectly from infections
caused by influenza (Figure 6A; one influenza sample grouped in
the bacterial infection cluster). A discriminative signature was also
obtained in patients with acute respiratory infection (Figure 6B).
The mixed signature that we have described initially was not
observed for any of the samples in this new set of patients that
segregated perfectly. This fact can be attributed to the smaller
number of patients recruited or possibly to the fact that the most
recent samples (Figure 6B) were collected during the 2005-2006
flu season, which was particularly mild. Earlier samples (Figure
5C), on the other hand, were collected during the 2003-2004 flu
season, which produced an unusually large number of severe cases
as well as bacterial superinfections.

Microarray data are notoriously difficult to compare across
different platforms.20-22 Our initial results obtained with Affymetrix
GeneChips were nevertheless reproduced in an entirely new set of
24 samples using the Illumina whole genome Sentrix Hu6 Bead-
Chips (Figure 6C; only one sample from the bacterial infection
group clustered with influenza samples). In this cohort, only 2
patients belonging to the S aureus or S pneumoniae group
presented with acute respiratory infection.

Altogether 144 microarray analyses have been carried out in the
context of this study, including 137 on samples collected from 131

Figure 5. Distinctive patterns of gene expression in circulating leukocytes
obtained from patients with acute respiratory infections. (A) In addition to the 30
classifier genes found to discriminate S aureus from E coli (Venn diagram, right: Sa
from Ec; Figure 2; Table S6), we identified 30 genes that distinguish S aureus from S
pneumoniae (Venn diagram, left: Sa from Sp; Figure S2; Table S10) and 45 genes
that distinguish E coli from S pneumoniae (Venn diagram, bottom: Ec from Sp; Figure
S2; Table S8). Only 3 genes were shared between either of these groups. (B) The 3
groups of genes found to discriminate samples from patients with bacterial infections
shown in panel A were merged (102 unique genes, Venn diagram, left) and compared
to the classifier genes used to discriminate influenza A from bacterial infections (35
genes, Venn diagram, right; Figure 1; Table S3). No genes were shared between
these 2 groups. (C) The 137 classifier genes that discriminate influenza A from
bacterial infections and the 3 groups of patients with different bacterial infections were
merged and used to generate discriminatory patterns of expression among 27
patients with respiratory infections and 7 healthy volunteers. Values were normalized
to the median expression of each gene across all donors. Clustering of conditions
partitioned samples into 4 major groups. Four samples belonging to the influenza A
group and one from the S aureus formed a distinct subgroup characterized by a
mixed signature (*) and are listed in Table 1 (Figure 5C*).

Table 5. List of the 30 classifier genes distinguishing S aureus from
E coli infections

Function, gene Significance

S aureus to E coli

Signal transduction

CXCL1 0.00106

JAG1 0.00158

RGS2 0.00027

Metabolism

GAPD 0.00044

PPIB 0.00044

PSMA7 0.00106

MMP9 0.00837

p44S10 0.00158

Protein targeting

TRAM2 0.00384

Intracellular protein transport

SEC24C 4.92 	 10�5

Miscellaneous

ACTG1 0.00622

CGI-96 0.00454

MGC2963 0.00158

STAU 4.92 	 10�5

STAU 4.92 	 10�5

E coli to S aureus

Intracellular signaling

RASA1 1.20 	 10�5

SNX4 4.92 	 10�5

MAP4K4 0.000693

Regulation of translational initiation

AF1Q 0.00106

EIF5B 0.00106

Regulation of transcription

SMAD2 0.00044

Cell adhesion

JUP 0.00158

Metabolism

PP 4.92 	 10�5

MAN1C1 0.00016

Miscellaneous

FLJ10287 4.92 	 10�5

FLJ20152 0.00622

LRRN3 1.20 	 10�5

LRRN3 0.00027

SGPP1 0.00158

UBAP2L 2.12 	 10�6

Genes are grouped functionally based on ontologies, and levels of significance
are shown. Full details are available in Table S6.
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patients with acute infections. Along with the confirmation ob-
tained by real-time PCR (Figure S1 and Table S5), the independent
data validation carried out across microarray platforms attests to
the robustness of our findings.

Discussion

A number of studies have shown that different transcriptional
programs could be triggered on exposure of immune cells to
various pathogens in vitro,23-26 and more recently transcriptional
signatures have been identified in the blood of patients presenting
with infections.27-29

The comparative analysis of a compendium of host-pathogen
microarray data sets (encompassing 32 studies) identified both
common host transcriptional response to infections and pathogen-
specific signatures.30 Broad similarities exist, with, for instance,
dynamic cascades of cytokines and chemokines involved in the
activation and recruitment of immune cells observed in the context
of fungal, bacterial, or viral infections.31-35 However, 2 factors
contribute to the specificity of transcriptional responses to infec-
tions: (1) the diversity of the molecular mechanisms involved in
pathogen recognition, and (2) alterations of host responses by
pathogens. On activation, Toll-like receptor (TLR) family members
trigger signaling pathways that share common components while
retaining unique characteristics accounting for the specificity of
transcriptional responses.36 Hence, qualitative and quantitative
differences in the responses to Gram-positive and Gram-negative
bacteria, respectively, recognized by TLR2 and TLR4, have been
observed.24,25 Furthermore, responses measured in dendritic cells
exposed to influenza virus (through TLR3), E coli (through TLR4),
and Candida (through TLR2/TLR4) were also found to be mark-
edly different.26 Reprogramming of host cells by pathogens also
contributes significantly to the diversification of transcriptional
responses to infection. As measured by microarrays, mycobacterial
products are, for instance, able to inhibit IFN-
–induced gene
regulation in macrophages.37 Similarly, microarray studies have
demonstrated the ability of herpes virus, pseudorabies virus,

hepatitis C, varicella-zoster virus, or rhinovirus to limit the ability
of the host to develop effective antiviral responses by a variety of
mechanisms.38-42 Altogether the vast body of in vitro experimental
data accumulated over recent years suggests that hosts can mount
pathogen-specific transcriptional responses to infections.

Here, we have demonstrated that blood leukocyte gene expres-
sion patterns can be used to distinguish patients with acute
infections caused by 4 different pathogens: influenza A virus, the
Gram-negative bacterium, E coli, and Gram-positive bacteria S
aureus and S pneumoniae, which are among the most common
infections leading to hospitalization of children.

Two parameters might account for differences in gene expres-
sion levels observed in blood leukocytes: (1) changes in transcrip-
tional activity (eg, up-regulation of IFN-inducible genes) or (2) an
altered cellular composition of blood samples (eg, neutrophil
signature). Changes in expression due to either one or both of these
parameters may be mediated directly by pathogen-derived mol-
ecules or the action of secondary factors released by the host (eg,
cytokines). We have not observed major differences in the cellular
composition of blood samples obtained from the different groups of
patients. Indeed, it is well established in clinical practice that the
routine white blood cell and differential counts cannot distinguish
between viral versus bacterial infections and much less between
infections caused by Gram-positive and Gram-negative bacteria.
However, studies from our group have found earlier that subtle
differences might account for observed transcriptional signatures
as exemplified by the neutrophil signature in SLE, which is due to
enhanced efflux of low-density neutrophils present in PBMC
preparations.6 The site of disease involvement may also influence
expression profiles observed in blood leukocytes and reflects the
predilection of certain species of pathogens for different infection
sites. E coli, for example, is more likely to cause urinary tract
infection, whereas the most common clinical manifestations of S
aureus are skin/soft tissue infections and osteomyelitis. The results
obtained in the present study suggest, however, that distinctive
expression signatures can be found in the context of a single
disease manifestation. Indeed, when analyzing samples from
patients with lower respiratory infections, a clear separation

Figure 6. Independent confirmation and validation across microarray platforms. (A) A new set of data obtained from patients with acute influenza (n � 10) and bacterial
infection (S aureus: n � 6; S pneumoniae: n � 6) was analyzed using Affymetrix U133 plus 2.0 GeneChips. The original classifier genes found to discriminate influenza A from
bacterial infections (35 genes, Venn diagram, right; Figure 1; Table S3) were used to cluster this new set of samples. (B) A subset of 14 samples from patients with acute
respiratory infection included in panel A were clustered using the list of 137 transcripts from Figure 5. (C) Another independent set of samples was obtained from a new set of
patients with acute influenza (n � 8) or bacterial infection (S aureus: n � 13; S pneumoniae: n � 3) analyzed using Illumina Sentrix Hu6 whole genome BeadChips. Classifier
genes used to discriminate influenza A from bacterial infections (35 genes, Venn diagram, right; Figure 1; Table S3) were used to cluster this new set of samples. Transformed
expression levels are indicated by color scale, with red representing relative high expression and blue indicating relative low expression compared to the median expression for
each gene across all donors.
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between infections caused by the different pathogens was ob-
served, confirming the existence of pathogen-associated transcrip-
tional signatures. Notably, these findings have been the object of
extensive validation, in multiple independent sets of patients, by
PCR, and across microarray platforms. Furthermore, this extensive
data set (148 patient transcriptional profiles) is made available in a
public domain repository (see “Patients, materials, and methods”
for details).

Our ability to identify etiologic agents responsible for acute
infections remains disappointingly low in many clinical situations,
and the analysis of blood leukocyte transcriptional profiles has the
potential to transform our approach to diagnosis in infectious
diseases.43,44 Because our goal was to establish the proof of
concept, that is, that blood leukocytes carry signatures that allow
discrimination among different microbial pathogens, blood samples
were obtained from hospitalized patients with defined infections.
Using this approach we were able to establish that leukocytes
isolated from the peripheral blood of patients carry transcriptional
signatures that can be used to distinguish infectious diseases of
different etiologies. Additional studies will be necessary to evaluate
the merits of this approach in a relevant clinical setting, that is, the
emergency room. Furthermore, it will be important to determine
whether transcriptional analysis of blood leukocytes can provide
information that would permit following the progression of the
disease and assess risks of complications.

In conclusion, this study illustrates the plasticity of immune
responses to pathogens in the blood at the transcriptional level and
highlights the potential value of blood leukocyte transcriptional
signature analyses as an adjunctive means of diagnosis of infec-
tious diseases.
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