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Cell-surface association between matrix metalloproteinases and integrins:
role of the complexes in leukocyte migration and cancer progression
Michael Stefanidakis and Erkki Koivunen

Leukocyte motility is known to be depen-
dent on both �2-integrins and matrix met-
alloproteinases MMP-2/-9 or gelatinases,
which mediate leukocyte adhesion and
the proteolysis needed for invasion, re-
spectively. Gelatinases not only play an
important role in cell migration, tissue
remodeling, and angiogenesis during de-

velopment, but are also involved in the
progression and invasiveness of many
cancers, including leukemias. The con-
cept that MMPs associate with integrins,
as well as their importance in some physi-
ologic and pathologic conditions, has
been advanced previously but has not
been examined on leukocytes. This re-

view will examine mainly the function of
the MMP-integrin complexes in normal
leukocyte migration and the effect of inte-
grin and broad-spectrum MMP inhibitors
in tumor progression. (Blood. 2006;108:
1441-1450)
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Leukocyte adhesion and migration

Neutrophils, also known as polymorphonuclear leukocytes (PMNs)
originate from stem cells in the bone marrow. They represent 60%
to 70% of the total circulating leukocytes and are the first cells to be
recruited to the sites of infection or injury within minutes to hours
after maturation, forming a primary defense against infectious
agents or “foreign” substances that invade our body’s physical
barriers. The initiation of an inflammatory response involves 3
major steps: (1) increased blood flow by dilation of capillaries; (2)
escape of plasma proteins from the bloodstream; and (3) extravasa-
tion of neutrophils through the endothelium and accumulation at
the site of injury. Elimination of invading microorganisms is
accomplished by phagocytosis, generation of reactive oxygen
metabolites, as well as through release of proteolytic enzymes and
microbicidal substances, all stored in intracellular granules of
mature PMNs.1

The main functions of neutrophils involve adhesion, extravasa-
tion, chemotaxis, phagocytosis, and production of oxidative agents.
Like all leukocytes, these functions can be triggered by appropriate
stimuli and the synergistic action of different adhesion molecules
that are present on the surface of both neutrophils and activated
endothelial cells.2 Interactions of neutrophils with the activated
endothelium have been extensively studied either under static
conditions or under physiologic conditions (flow shear forces).
Neutrophil tethering and capture have been shown to be mediated
by P-selectin binding to its ligand PSGL-1; neutrophil activation by
chemokines, such as IL-8; and firm adhesion by ICAM-1 binding
to �L�2- and �M�2-integrins.3 Chemokines capable of triggering
rapid arrest of T cells, B cells, and monocytes on endothelial cells
under physiologic conditions include SLC/CCL21, RANTES, and
SDF-1/CXCL12, respectively. Unlike other leukocytes, arrest
chemokines for neutrophils have been much more difficult to
define, even though the neutrophil adhesion cascade has been
studied longer and by more groups.

Role of integrins and MMPs in
leukocyte migration

Structure and function of leukocyte �2-integrins

The structural characteristics and functional roles of leukocyte
�2-integrins have been extensively reviewed.4,5 The �2-integrins
(�L�2, �M�2, �X�2, and �D�2) consist of �- (1063, 1137, 1144, and
1084 residues, respectively) and �- (747 residues) subunits (Figure
1A). Divalent cations are essential for integrin functions by
regulating the integrin structure in a state in which they increase or
suppress binding to physiologic ligands. A recent crystal structure
of �V�3-integrin showed that the bent form is capable of binding a
physiologic ligand in a Mn2�-dependent manner.6 To date, the
primary structures of all 4 �2-integrin �- and �-subunits have been
described by molecular cloning.7,8 Each integrin �-subunit contains
7, 60-amino-acid long, homologous segments in the amino-
terminal region, and with resemblance to a domain present in the
trimeric G protein �-subunit, that are predicted to fold into a
7-bladed �-propeller domain.9 Along with the I-like domain (�A)
from the �-subunit, they both interact to form the “head” of the
integrin (Figure 1B). Half of all integrin �-subunits contain an
additional, 200-amino-acid long, I domain that is inserted between
the propeller � sheets 2 and 37,9 and is homologous to (domains
within) a plasma glycoprotein von Willebrand factor.10 The 3-dimen-
sional architecture of the extracellular domains of the integrin �-
and �-subunits has been revealed by crystallization, electron
microscopy, and nuclear magnetic resonance (NMR).11 Based on
the crystal structure of the extracellular domains of �V�3, it has
been predicted that the I domain lies on top of the �-propeller
domain (Figure 1C).9

Loss of heteromerization of the integrin during biosynthesis
caused by mutations in the gene encoding the �-subunit resulted in
reduced �2-integrin cell-surface expression and function on leuko-
cytes, leading to a rare human inherited disease called leukocyte
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adhesion deficiency-I (LAD-I).12 Expression of nonfunctional
�2-integrins was also observed in LAD-I patients carrying muta-
tions in the MIDAS motif of the I-like domain in the �-subunit.13

PMNs and monocytes from LAD-I patients fail to migrate through
the vascular endothelium or become fully activated because of lack
of adherence, actin cytoskeleton rearrangement, and spreading on
ICAM-1– or ECM-coated surfaces. This explains why LAD-I
patients are susceptible to life-threatening bacterial infections. The
same phenotype was observed in �2-integrin knock-out mice.14

Regulation of cell adhesion and migration

Leukocyte migration is a complex process, controlled by a wide
spectrum of leukocyte and endothelial cell adhesion molecules and
by the presence of chemotactic molecules. These molecules, as
well as growth factors, are responsible for the establishment of a
polarized cell migration and there is enough evidence to prove that
signaling from both phospholipids and proteins from the Rho
family of small GTPases are also involved in directed cell
motility.15 Migration of leukocytes is essential for immune re-
sponses, tissue repair, and embryonic development.

A polarized morphology of leukocytes was first described to be
similar to that of a migrating amebae, with a leading edge at the
front and a uropod at the rear of a migrating cell.16 T cells recognize
and bind to antigen presenting cells (APCs) through their leading
edge. A number of receptors are concentrated at the leading edge,
including �V�3, uPAR, and fMLP-R in neutrophils; CCR2, CCR5,
and FAK in T cells; and CXCR4 in B cells, which are able to sense
chemotactic gradients, thus guiding leukocytes to migrate in a
polarized manner. At the uropod, several reports show localization
of ICAMs, L-selectin, �M�2, PSGL-1, Fc�R-IIIb, CD2, CD43, and
CD44,17,18 which play a pivotal role in cell adhesion, thus
facilitating cell migration. Release of the uropod triggers cell
migration. Some of these receptors, when bound to the substratum,
become linked to the actin cytoskeleton during cell migration.
Interactions between the cytoskeleton and the cell-surface recep-
tors are required for the formation of membrane protrusions, such

as lamellipodia (broad, sheetlike structures) and filopodia (thin
cylindrical needlelike projections), both structures located at the
leading edge.16 Several MMPs, including MT1-MMP and
MMP-2, were found to colocalize at membrane protrusions.
Interaction of MMPs with their natural inhibitors, TIMPs, at
these sites might be the key mechanism for the regulation of
cell-surface MMP activation and, eventually, the control of the
invasive phenotype of cells.19

Cell-surface association of MMPs and other proteases

Matrix metalloproteinases (MMPs) are a family of structurally
related and highly conserved zinc-dependent endopeptidases collec-
tively capable of degrading most components of the basement
membrane and ECM.20 MMP substrates also include a wide variety
of proteins, such as chemotactic molecules, adhesion molecules,
proteinase inhibitors, cell-surface receptors, blood clotting factors,
latent growth factors, and growth factor–binding proteins. Most
human MMPs can be divided according to their sequence homol-
ogy, substrate specificity, and cellular location into several sub-
classes: collagenases, gelatinases, stromelysins, matrilysins, mem-
brane-type MMPs, and others. The basic multidomain structure of
MMPs comprises the following: (1) an amino-terminal domain; (2)
a catalytic domain; and (3) a carboxy-terminal domain. To date,
there are at least 25 secreted or membrane-bound known human
MMPs.21 The expression, secretion, and activity of MMPs in
normal tissues are subject to tight control. Data generated from
intensive studies on MMP activities in different cells and
tissues, as well as studies from knock-out animals, witness the
importance of these enzymes in many normal physiologic
processes (eg, embryonic development, bone resorption, angio-
genesis, and wound healing) and pathologic processes (rheuma-
toid arthritis, multiple sclerosis, periodontal disease, and tumor
growth and metastasis).20,22,23

MMPs are secreted as zymogens from inside the cell to the cell
surface and into the extracellular environment where they are able
to degrade both ECM and non-ECM proteins. It remains unclear
how these enzymes make it to the correct location at the cell surface
and how the proteolytic activity is controlled at the pericellular
space. However, it has been suggested that MMP binding to
cell-surface proteins can have an effect on intracellular signaling,
facilitate proenzyme localization and activation, mediate cell
motility by disruption of cell contacts with the ECM, and promote
internalization of the enzyme. For example, integrins are shown to
act as receptors for several proteases, including MMPs. Such
interactions have been detected in caveolae, in invadopodia, and at
the leading edge of migrating cells, where directed proteolytic
activity is needed. The first interaction between an integrin (�V�3)
and an MMP (MMP-2) was identified on the surface of melanoma
cells and angiogenic blood vessels (Table 1). This complex was
shown to be involved in tumor growth and angiogenesis in vivo.82

Caveolae are membrane invaginations known to serve as sites for
clustering of various integrins and proteases.83 MT1-MMP was
shown to activate �V�3 through proteolytic cleavage, suggesting
that coordinated expression and localization of these molecules
may be important for cancer cell invasion and metastasis. Further-
more, there is evidence that the �V�3-integrin has modulatory
properties on MMP-2 activity by binding to its C-terminal do-
main.28,82 Inhibition of the �V�3/MMP-2 complex formation by
either the MMP-2 C-terminal domain84 or a small molecule
inhibitor, TSRI265,85 dramatically suppressed angiogenesis in
vivo, demonstrating that this interaction is essential for endothelial
cell proliferation and migration. Since then, several other important
protease associations with integrins have been reported (Table 1),

Figure 1. Schematic structure of the leukocyte integrin. (A) The integrin’s primary
structure, including divalent cation-binding sites (Mg2� as red stars, and Ca2� as gray
stars). (B,C) Schematic representations of the bent (inactive) and straightened
(active) conformations of the integrin, respectively. The arrangement of domains is
based on the 3-dimensional crystal structure of �V�3-integrin, with an I domain added
between the second and third �-propeller repeats. Each domain is colored as in panel
A. I-d indicates I domain; I-EGF, integrin–epidermal growth factor domain; PSI,
plexin/semaphorin/integrin; and �TM, �-tail domain.
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suggesting that pericellular proteolysis may be activated and
targeted by integrins and other cell-surface receptors.

In leukocytes, uPA could bind to its receptor, uPAR, and to
�M�2 simultaneously, forming a trimolecular complex where �M�2

could serve as a signaling receptor.86 This interaction is likely to be
mediated by both the kringle and proteolytic domains for uPA and
the I-domain for �M�2. This complex plays an essential role in the
migration of inflammatory cells and vascular homeostasis. The
uPA/uPAR complex was also found to be associated with the
�5�1-integrin and capable of promoting adhesion and migration of
Chinese hamster ovary cells as well as intracellular signal transduc-
tion through the integrin. In addition, a cyclic peptide DDGW
discovered by phage display and an MMP-9–derived peptide motif
HFDDDE both inhibited proMMP-9/�M�2 complex formation and
leukocyte migration in vitro and in vivo.47,87 However, this motif
did not block leukocyte adhesion to ICAM-1 and fibrinogen,
suggesting the integrin-bound MMP is essential for degradation of
integrin-directed bonds to matrix proteins. Recently, proMMP-9
was found to be associated with ICAM-142 and DNA repair protein
Ku44 on the surface of leukemic cells. ICAM-1 cleavage by
MMP-9 resulted in tumor cell resistance to natural killer cell–

Table 1. Proteinase association with integrins

Soluble
proteases/associated

proteins
Cell-surface
expression Source

MMPs

MMP-1

�1�1 Myocytes Stricker et al24

�2�1 Keratinocytes Dumin et al25

EMMPRIN Lung carcinoma Guo et al26

PAR1 Breast carcinoma Boire et al27

MMP-2

�V�3 Melanoma, endothelial Brooks et al28

LRP Fibroblasts Yang et al29

Collagen chains Fibroblasts Steffensen et al30

TSP-2 Fibroblasts Yang et al29

TIMP-2 Malignant cells Olson et al31

Caveolin-1 Endothelial Puyraimond et al32

Hsp90� Fibrosarcoma Eustace et al33

MT1-MMP Fibrosarcoma Strongin et al34

BS — Fedarko et al35

MMP-3

Osteopontin — Fedarko et al35

MMP-7

CD44HSPG Epithelial Yu et al36

TM4SF — Maecker et al37

CD151 Rectal carcinoma Shiomi et al38

MMP-9

Collagen chains Epithelial/fibrosarcoma Okada et al39

RECK Fibrosarcoma Takahashi et al40

CD44 Melanoma Yu et al41

ICAM-1 Leukemias Fiore et al42

LRP Fibroblasts Hahn-Dantona et al43

Ku protein Macrophages/leukemia Monferran et al44

TIMP-1 Fibroblasts O’Connell et al45

TSP-1 Malignant cells Rodriguez-Mazaneque et al46

�L/M�2 Neutrophils/leukemias Stefanidakis et al47

�5�1 Epithelial Wang et al48

�3�1 Mammary carcinoma Morini et al49

�V�5 Fibrosarcoma Bjorklund et al50

DMP-1 — Fedarko et al35

MT1-MMP

�V�3 Endothelial Galvez et al51

�1-subunit Endothelial Galvez et al51

CD44 Fibrosarcoma Mori et al52

TIMP-2 Breast carcinoma Imai et al53

Collagen type I Gingival fibroblasts Tam et al54

RECK Fibrosarcoma Oh et al55

Serine proteases

uPA

uPAR* Malignant Ellis et al56

�M/X�2 Neutrophils Xue et al57

�V�3 Fibrosarcoma Xue et al58

�V�5 Mammary carcinoma Carriero et al59

�3�1 Mammary carcinoma Wei et al60

Elastase

�M�2 Neutrophils Cai and Wright61

Seprase

uPAR Melanoma Artym et al62

�3�1 Melanoma Monsky et al63

Dipeptidyl peptidase IV

�3�1 Fibroblasts Ghersi et al64

Cathepsin G

FPR Leukemias Sun et al65

HIV-1 gp120 Leukemias Avril et al66

Membrane Gp Platelets/neutrophils Molino et al67

Proteinase 3

�M�2 Neutrophils David et al68

Plasmin

Annexin II Kidney cells MacLeod et al69

Table 1. Proteinase association with integrins (continued)

Soluble
proteases/associated

proteins
Cell-surface
expression Source

Cysteine proteases

Cathepsin B

Annexin II Tumors Mai et al70

�2-M Bone metastases Arkona et al71

Caspase-8

�3�1 Neuroblastoma Stupack et al72

ADAMs

ADAM-2

�6�1 Oocytes Chen et al73

ADAM-7

�4�1 T-cell leukemia Bridges et al74

�9�1 T-cell leukemia Bridges et al74

�4�7 T-cell leukemia Bridges et al74

ADAM-9

�6�1 Fibroblasts Nath et al75

�9�1 Oocytes Eto et al76

�v�5 Myeloma Zhou et al77

ADAM-12

�9�1 Hematopoietic Zhang et al78

ADAM-15

�V�3 Hematopoietic Nath et al79

�5�1 Hematopoietic Nath et al79

�9�1 Oocytes Eto et al76

ADAM-17

�5�1 Epithelial Bax et al80

ADAM-23

�V�3 Neuroblastoma Cal et al81

ADAM-28

�4�1 Lymphocytes Bridges et al74

�9�1 T-cell leukemia Bridges et al74

�4�7 T-cell leukemia Bridges et al74

ADAM-33

�9�1 T-cell leukemia Bridges et al74

Many of the functions and binding mechanisms of these complexes have not yet
been elucidated.

PAR1 indicates protease-activated receptor 1; Hsp, heat shock protein; BS, bone
sialoprotein; HSPG, heparan sulfate proteoglycans; RECK reversion-inducing cys-
teine-rich protein with kazal motifs; DMP-1, dentin matrix protein-1; FPR, formyl
peptide receptor; �2-M, �2-macroglobulin; ADAM, a disintegrin and metalloprotein-
ase; Gp, membrane glycoproteins; and —, not studied.

*uPAR, in turn, interacts with �M/X�2, �V�3, �V�5, and �3�1.
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mediated cytotoxicity. Also, a chaperone heat shock protein 90
(Hsp90) was found to interact with MMP-2 on the cell surface of
fibrosarcoma cells, thus promoting MMP-2 activation, which is
critical for tumor invasiveness.33 The binding mechanism of most
of these interactions has not yet been elucidated.

Several cell-surface hyaluronan receptor CD44 isoforms, RECK,
TSP-1, LRP, and cell-surface collagen IV chains also serve as
MMP-9–docking molecules. The CD44/MMP-9 complex was
found to be associated with invasiveness of mouse mammary
carcinoma and human melanoma cells in vivo,41 suggesting that
CD44 helps to localize MMP-9 activity to the cell surface. The
GPI-linked proteins RECK and TSP-1 were not only identified as
cell-surface receptors for MMP-9 but also were found to block their
enzymatic activity.46,55 Interaction of MMPs with the cell surface
not only may be needed for proenzyme activation and targeting at
specific sites for degradation of cell-surface substrates, but also
could promote intracellular degradation via receptor-mediated
endocytosis (RME). Regulation of the cell-surface activity of
proteolytic enzymes that are involved in cancer progression,
including MMP-2, -9, -13, tPA, and uPA by endocytosis, has led to
suppression of tumor cell invasion.88

A disintegrin and a metalloproteinase (ADAMs) and ADAM
with a thrombospondin motif (ADAMTS) comprise a large family
of proteins capable of interacting with integrins and involved in
processes such as angiogenesis, fertilization, myogenesis, neurogen-
esis, and inflammation. Unlike the transmembrane proteins AD-
AMs, ADAMTS proteins are soluble ECM proteases consisting of
a prodomain, metalloprotease, and disintegrin domains, but devoid
of ADAMs’ cysteine-rich, EGF-like transmembrane and cytoplas-
mic domains.89 ADAM2 or fertilin � was one of the first
disintegrins identified and found to interact with �6�1-integrin.73 To
date, several other ADAM-integrin interactions have been identi-
fied: ADAM9 with �v�5 and �6�1, ADAM12 and ADAM15 with
�9�1, ADAM15 and ADAM23 with �v�3, and ADAM15 with �5�1

(Table 1).90

Role of integrins and gelatinases in cancer
progression

Early events in tumor progression are characterized by increases in
cell proliferation, insensitivity to growth-inhibitory signals, re-
duced ability for differentiation, as well as the ability to escape
from apoptosis and immune surveillance.91 Proteinases that de-
grade components of the ECM and are capable of processing
nonmatrix substrates (eg, growth factors and their receptors,
chemokines, adhesion molecules, and apoptotic mediators) have
long been considered to be important at all stages of tumorigen-
esis.92 The combined participation of integrins and MMPs is
required for invasion of tumor cells into surrounding connective
tissues, intravasation and extravasation from blood vessels, and
metastasis to distant organs.93 Indeed, studies on TIMPs have
shown that overexpression or administration of these inhibitors as
recombinant proteins inhibited experimental invasion and metasta-
sis.94 In most cases, the stage of tumor progression correlates with
the expression levels of gelatinases, as the invasive and metastatic
potential of tumor cells is strongly affected by changes in
gelatinase expression in animal models. Expression of MMP-2 and
MMP-9 was found to be strongly up-regulated in cancers of lung,
colon, breast, skin, and prostate, which correlated with increased
tumor invasiveness and metastasis.22 Inhibition of MMP-9 expres-
sion in a model of experimental metastasis reduced the number of
colonies formed in the lungs of mice.95 Further evidence supporting

this hypothesis came from studies on MMP-2 and -9 null mice.
These mice developed fewer tumors than the wild type.21

Integrins and gelatinases in invasion and metastasis

The initial step of tumor cell invasion is characterized by the
breakdown of the basement membrane, a process known to be
dependent on type IV collagen–degrading enzymes, mainly MMP-2
and MMP-9. Liotta et al obtained results where type IV gelatinase
activity correlated with cancer metastasis.96 Endothelial cell prolif-
eration and migration into the tumor tissue are mediated by
angiogenic (eg, MMP-9, VEGF, and basic fibroblast growth factor
[bFGF]) and lymphangiogenic factors that are released by tumor
cells. Using DNA microarrays, primary tumor-gene expression
profiles could be arranged in classes of “good” and “poor”
prognosis. DNA-microarray analysis on human breast carcinoma
cell lines that have metastasized to bone revealed some of the genes
(eg, MMP-1, MMP-2, CXCR4, IL-11, and CTGF) responsible for
the increased metastatic potential of breast cancer cells.97,98 Video-
microscopy studies showed that MMPs play a significant role in
tumor metastasis, as TIMP-1 and MMP inhibitor batimastat
(BB-94) blocked the formation of tumors in secondary sites.99 The
role of MMPs in tumor invasion and metastasis has also been
studied using small-interfering RNAs and antisense technol-
ogy.100,101 Gelatinases and MT-MMPs revealed a new mechanism
to control metastasis by cleavage of the metastasis suppressor gene,
KiSS-1.102 Finally, recent studies supporting the in vitro data from
double MMP-2/MMP-9–deficient mice demonstrated that these
enzymes cooperate in promoting the invasive phenotype of malig-
nant keratinocytes in an experimental model in vivo.103

Changes in integrin expression and localization can also
influence invasion and metastasis of tumor cells.104 Integrins were
shown to be involved in the migration and liver metastasis of large
cell lymphoma cells and angiogenesis, as �v�3 antagonists induced
apoptosis and blocked cancer cell invasion.105 �4�1-integrin has a
dual role in cancer progression as it inhibited the initial invasive
growth while promoting metastatic spread of melanoma cells. A
different study showed that increased expression of this integrin
could inhibit the invasive stage of metastasis formation.106 Block-
ing integrins with synthetic peptides containing an RGD sequence,
antibodies, or disintegrins (integrin-binding proteins isolated from
snake venom) has been demonstrated to interfere with tumor cell
invasion and metastasis in vitro and in vivo.107 Of importance,
cooperation between �v�3 and MMP-9 increased migration of
metastatic breast cancer cells.108 Also, several reports show that
uPA binding to its receptor uPAR is a requirement for tumor cell
invasion and metastasis, as this process is efficiently inhibited
either by an amino-terminal fragment of urokinase or a mutant
plasminogen activator inhibitor-2 (PAI-2).109 Finally, a recent study
highlights the importance of chemokine receptors in breast cancer
metastasis in vitro and in vivo.110

Integrins and gelatinases in cancer-associated inflammation

Chronic inflammation is also associated with a variety of cancers,
including breast, liver, prostate, and skin.92 In human cancer, tumor
cells are not the only source of MMPs. MMPs, mainly gelatinases,
are predominantly produced by stromal cells, ranging from im-
mune (lymphocytes and dendritic cells), inflammatory (granulo-
cytes and monocytes), and vascular cells (vascular- and lymph-
endothelial cells and pericytes). MMPs have been involved in the
escape of cancer cells from immune surveillance. The escape
mechanism occurs through MMP-9–induced cleavage of the inter-
leukin-2 receptor (IL-2R�),111 TGF-� activation,112 and ICAM-1
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and ICAM-2 shedding,42,113 thus suppressing T-cell proliferation
and immune response against tumors.

Chemokines play an essential role in regulating directional
migration of leukocytes. Proteolytic cleavage of chemokines by
MMPs can lead to enhanced or reduced leukocyte recruitment into
tumors. For example, a cleaved form of MCP-3 produced by
MMP-2 can bind to CC-chemokine receptors, and unlike intact
MCP-3, it abrogates chemotaxis and suppresses inflammation.114

ET-1 processing by MMP-9 generates endothelin-1 (ET-1) that
induces secretion of MMP-9 from neutrophils,115 suggesting that
MMPs are both effectors of leukocyte migration and regulators of
the inflammatory response. The importance of chemokine recep-
tors in metastasis was demonstrated by inhibition of SDF-1 binding
to its receptor. Dissociation of SDF-1/CXCR-4 complex by block-
ing antibodies strongly reduced breast cancer metastasis to lungs
and lymph nodes in vivo.110 MMP-9 and VEGF are produced by
mammary tumor-infiltrating immune cells.116 Expression of
MMP-9 by tumor-infiltrating macrophages promotes angiogen-
esis as well as growth and invasion of xenografted ovarian
cancer cells in vivo.117 Several studies show that cancer cells can
promote the secretion of MMPs by stromal cells in a paracrine
manner via secretion of growth factors, interleukins, and
EMMPRIN.21 Recruitment of hematopoietic precursor cells is
also required for tumor angiogenesis.118

Role of integrins and gelatinases in
acute leukemias

Leukemia can be described as the uncontrolled proliferation of
hematopoietic cells that lack the ability to differentiate into mature
blood cells. The precise role of gelatinase expression in acute
leukemias is not clear. So far, it is known that invasiveness of many
hematologic malignancies, including myelo-monocytic leukemias,
involves overexpression of proteolytic enzymes, such as MMP-2
and MMP-9.119 MMP-9 is induced and secreted in conditioned
media of leukemic cell lines in response to extracellular stimuli,
after pretreatment of cells with chemokines, and after cell adhesion
to the ECM.119 Higher gelatinase expression levels were detected in
the bone marrow plasma of patients with leukemia compared with
healthy controls. After chemotherapy, the levels of TIMP-1 and
TIMP-2 were significantly increased, whereas MMP-9 levels were
lower in acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML) patients. Accordingly, AML patients who achieved
a complete remission showed significantly lower MMP-9 levels,
suggesting that MMP-9 could be a surrogate marker of leukemic
status in these patients. Also, the low MMP-9 expression levels in
patients with leukemia correlated with increased survival.120

Several reports have demonstrated the involvement of both
MMP-2/-9 gelatinases and �2-integrins in the growth and progres-
sion of myeloid and lymphoid neoplasms.121,122 Selective MMP-9
expression is induced as a result of �M�2-integrin ligation in
PMNs123 and �L�2-integrin ligation in T-lymphoma cells.124 Also,
studies from �M- and �L-integrin knock-out mice confirm the
importance of �2-integrins in mediating leukocyte adhesion and
migration.125 In accordance, high infiltration of leukemic blasts in
patients with AML strongly correlated with increased expression of
both �L�2- and �M�2-integrins.121 AML cell adhesion to bone
marrow fibroblast monolayers seems to require both �1- and
�2-integrins, as antibodies against them inhibited the binding.126

Interaction between leukemic cells and bone marrow stroma cells
has been shown to increase leukemic cell survival and chemo-
therapy-induced leukemia cell resistance.127

Increased vessel density was detected in the bone marrow of
acute and chronic leukemia patients compared with normal bone
marrow, and is known to be mediated by angiogenic factors such as
VEGF and bFGF.128,129 Both increased plasma MMP-9 and VEGF
correlated with high leukemia cell infiltration, suggesting that
MMP-9 and VEGF act cooperatively in the process of leukemia
cell invasion.122 Another study showed that increased vessel
density was mediated by MMP-2 and MMP-9 overexpression in
primary AML blasts by promoting endothelial cell migration.130

After achieving complete remission, the vessel number in AML
patients was restored to normal levels. Furthermore, a gene therapy
approach using a retroviral vector encoding for gelatinase inhibi-
tors, endostatin and angiostatin, strongly inhibited bone marrow
angiogenesis and leukemia tumor growth in vivo.131 These data
suggest that gelatinases could be involved in leukemia progression.
As a result, inhibitors of MMPs may be useful in treating
hematologic malignancies.

Therapeutic intervention with MMP and
integrin inhibitors

Due to the fact that integrins and MMPs are involved in tumor cell
invasion and metastasis, over the past 20 years a lot of effort has
been put into designing integrin and MMP inhibitors (MMPIs).
Although endogenous inhibitors, such as TIMPs, inhibited tumor
growth in transgenic mouse models, their use in cancer was limited
due to poor pharmacokinetics, difficulties in protein administration,
and broad spectrum of inhibition. To date, several synthetic MMPIs
have been developed, tested widely in clinical trials, and classified
into the following pharmacologic groups: collagen peptidomimet-
ics, nonpeptidomimetics, tetracycline derivatives, and biphospho-
nates.132 The efficacy of these inhibitors in clinical trials is
summarized in Table 2.

The design of collagen peptidomimetic MMPIs is based on the
collagen-peptide backbone with zinc-binding hydroxamate moiety
that coordinates the Zn2� ion, thus inhibiting the MMP catalytic
activity. An oral MMPI, marimastat, significantly increased sur-
vival of patients with gastric carcinoma. Treatment with marimastat
was well tolerated by the patients, except for some minor side
effects such as musculoskeletal pain, probably because of the need
of MMPs in normal remodeling of the connective tissue of tendons
and joints. In patients with advanced pancreatic cancer (a phase 2
study), marimastat showed comparable therapeutic effects as
conventional therapy with gemcitabine that was used.133 The
survival of patients suffering from glioblastoma multiforme was
also improved by using marimastat in combination with temozolo-
mide, a cytotoxic drug.134 Several nonpeptidomimetic MMP inhibi-
tors, including BMS-275291, AG3340, and MMI270, have also
been tested in clinical trials (Table 2).

Tetracyclines and biphosphonates have also been shown to
block MMP activity.135 For example, a broad spectrum MMP
inhibitor, metastat (or Col-3), showed increased tumor cell toxicity,
reduced tumor-induced angiogenesis, as well as antimetastatic
activity,136 and is currently being tested in patients with Kaposi
sarcoma and brain cancer in a phase 2 clinical trial. Periostat, a
tetracycline used for the treatment of periodontal diseases, is the
only MMPI on the market. Of interest, compounds (TSRI265)
capable of inhibiting interactions between MMPs and integrins
showed promising results in animal experiments.85 Also, a cyclic
peptide, CTTHWGFTLC, discovered by phage display technology
as a selective gelatinase inhibitor, could block cell migration and
tumor growth in a gelatinase-dependent manner.137
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The involvement of integrins in tumor cell invasion and
metastasis became clear after using �V-138 or �1-139 subunit–
blocking antibodies or small synthetic antagonists generated from
the ligand’s recognition sequence. Humanized mAbs, vitaxin and
efalizumab against �V�3-140 and �L-subunit of �L�2,141 respec-
tively, and the synthetic, cyclic Arg-Gly-Asp (RGD) peptide
motif142 present in many integrin ligands, were the 3 among many
other integrin-binding agents that have entered cancer clinical trials
(Table 2). Efalizumab and a recombinant mAb against �4�1,
natalizumab, have shown a great promise in the treatment of
psoriasis,141 as well as in multiple sclerosis and Crohn disease,
respectively.143,144 However, �3- and �5-integrin knock-out mice
showed increased expression of VEGFR-2 receptor, leading to
enhanced tumor angiogenesis.145 Taken together, MMP and inte-
grin knock-out models and inhibitors can increase our understand-
ing of the multiple functions of these molecules in several diseases,
including cancer. Such studies may be used to develop therapeutic
agents that can interfere with the integrin and MMP function on
invasive tumor cells and blood vessels.

Concluding remarks

The failure of MMPIs in several cancer clinical trials is not
surprising.146 Most MMPIs were used to treat patients with
late-stage tumors, whereas most results obtained from animal
experiments show the need for targeting MMPs in early stages of
cancer progression. Also, these inhibitors target all MMPs, many of
which are needed for the processing of antiangiogenic factors,
including angiostatin and endostatin. For that, increasing the
selectivity of these compounds (for example, for gelatinases

involved in metastasis) could solve the problem of side effects
reported so far. MMPIs are known to target also ADAMTS,
enzymes capable of reducing tumor growth by blocking tumor
angiogenesis.147 It should be taken into consideration that other
proteases are up-regulated during tumor progression that could
compensate for the loss of MMPs. These proteases should be
identified and targeted along with MMPs.

Extensive effort has been made in developing small molecules,
peptides, and peptidomimetics capable of inhibiting interactions
that occur on the cell surface. Several linear and cyclic peptides
derived from sequences of �2-integrins, ICAMs, and ECM proteins
have been shown to have inhibitory effects in vitro and in vivo.
Indeed, ICAM-1–derived peptides can control immune responses
in autoimmune diseases and allograft rejection by simply blocking
ICAM-1 binding to �L�2-integrin. Peptides derived from the
sequence of �1- and �2-integrins have also been shown to be potent
anti-inflammatory agents by blocking integrin-mediated adhesion
of leukocytes.148 Furthermore, inhibition of an integrin-MMP
cell-surface complex, �V�3/MMP-2, dramatically suppressed tu-
mor angiogenesis in vivo, suggesting that this interaction is
essential for endothelial cell proliferation and migration.85 Such
reagents were reported not only to interfere with ligand binding,
but also could stabilize integrin conformations. Also, integrin-
directed small molecules have entered phase 1 and 2 clinical cancer
trials, as they showed strong inhibition of tumor angiogenesis.149

Peptides containing the RGD sequence have been demonstrated to
inhibit experimental tumor metastasis in animal models.107

Studies on the role of MMP-9 in leukocyte migration have been
controversial. For example, some reports have supported MMP-9
function in leukocyte migration,150,151 whereas others have not.152,153

These findings are not surprising as MMPs are known to have

Table 2. MMP and integrin antagonists in clinical trials

Inhibitors Structure Specificity Status/indication

MMPs

Batimastat (BB-94) Peptidomimetic MMP-1, -2, -3, -7, -9 Development halted

Marimastat (BB-2516) Peptidomimetic MMP-1, -2, -7, -9 Phase 3/gastric cancer; phase 2/pancreatic cancer

BAY12-9566 Nonpeptidomimetic MMP-2, -3, -9 Development halted

AG3340 Nonpeptidomimetic MMP-2, -3 Phase 2/3/no benefit

BMS-275291 Nonpeptidomimetic Broad spectrum Phase 1/2/NSCL

MMI270 Nonpeptidomimetic Broad spectrum Phase 1/advanced cancer

Metastat (Col-3) Tetracycline derivative MMP-2, -9 Phase 2/Kaposi sarcoma

Periostat Tetracycline derivative Broad spectrum Phase M/periodontal disease

Neovastat (AE-941) Shark cartilage extract Broad spectrum Phase 2/multiple myeloma; phase 3/NSCL

Not known Green tea extract MMP-2, -9 Phase 3/cancer

Integrins

Efalizumab/Hu1124 Humanized MAb CD11� subunit Phase 3/psoriasis

Anti-CD18 Humanized MAb CD18 Phase 2/myocardial infarction

Anti-LFA1 Murine CD18 Phase 3/allograft rejection

Hu23F2G Humanized MAb CD11/CD18 integrin Phase 2/multiple sclerosis; phase 2/myocardial infarction; phase 3/stroke

LDP-01 Humanized MAb CD18 integrin subunit Phase 2/allograft rejection/stroke

LDP-02 Humanized MAb �4�7-integrin Phase 2/ulcerative colitis

Volociximab & erlotinnib MAb �5�1-integrin Phase 2/metastatic NSCL

ATN-161 PHSRN motif from FN �5�1-integrin Phase 1/NSCL

M200 MAb �5�1-integrin Phase 2/kidney cancer

Vitaxin/LM609 Humanized MAb �V�3-integrin Phase 2/sarcoma

Antegren Humanized MAb �4�1-integrin Phase 3/multiple sclerosis; phase 2/colitis, Crohn disease

Tysabri/natalizumab MAb �4�1-integrin Phase M/multiple sclerosis

Abciximab Chimeric Ab �IIb�3, �V�3, �M�2 FDA approved

Eptifibatide Cyclic heptapeptide �IIb�3-integrin FDA approved

Tirofiban Peptidomimetic �IIb�3-integrin FDA approved/myocardial infarction

Cilengitide Cyclic RGD peptide �V�3/�V�5-integrin Phase 2/GBM

Altocor/lovastatin Chemical �L�2-integrin FDA approval/atherosclerosis

Phase M indicates on the market; NSCL, non-small-cell lung cancer; Mab, monoclonal antibody; FN, fibronectin; GBM, glioblastoma multiforme; and FDA, Food and Drug
Administration.
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overlapping functions and other MMPs within the family could
compensate for the loss of MMP-9.

The physiologic role of MMP-2 and -9 is not fully understood,
but to our current knowledge they are involved in the processing of
the extracellular matrix during growth and tissue differentiation,
probably as critical factors for cell motility. Proteases and integrins
for such a function have been expected to be colocalized at the
surface of migrating leukocytes and other cells. Most MMPs,
however, are secreted enzymes and the search for cell-surface
receptors for MMPs has been going on for years. At the moment
there are some hundred publications describing receptors, such as
integrins for various MMPs, among them MMP-2 and -9. Like-
wise, gelatinase activity has been found in the membrane of
leukocytes, but the identification of the leukocyte integrins as
gelatinase receptors is new to our knowledge47,87 and likely to
extend our understanding of further mechanisms involved in
leukocyte migration. Studies from knock-out models for integrins,
including leukocyte �2-integrins, confirm their involvement in
various steps of cancer development. Eventually, tumor growth and
metastasis could be blocked by interfering with integrin function
on tumor cells and blood vessels.

MMP-9 has been reported to cooperate with �V�3- and �3�1-
integrins. MMP-9 was able to stimulate �V�3-integrin–dependent
migration of metastatic breast cancer cells and �3�1-integrin–
induced tumor invasion.108 MMP-9 and uPA have been also
identified as critical players in the invasion of tumor cells to the
blood circulation (a process called intravasation). These proteases
may act in concert with integrins, such as �V�5, which, in turn, is
also required for tumor cell dissemination in a chicken chorionallan-
toic membrane assay.82

We have recently shown that proMMP-9/�M�2 complex is
stored within the intracellular granules in resting PMNs and
translocated to the cell surface upon cell stimulation (Figure 2).
This is a more plausible mechanism for the MMP/integrin complex
formation than binding of a secreted MMP to an unoccupied
integrin on the cell surface. Also, leukocyte integrins could play a
role in targeting of proMMPs to a site where proteolytic activity is

needed. However, it remains to be determined by which mecha-
nism (pro)MMP-9 is located at the surface of cells lacking
�2-integrins. Based on our findings, new and more effective cancer
therapeutics could be achieved by blocking, not only MMPs alone
but their association with integrins or other cell-surface receptors.
A peptide motif derived from the MMP-9 catalytic domain,
HFDDDE, and a cyclic peptide, DDGW, discovered by phage
display both inhibited proMMP-9/�M�2 complex formation and
leukocyte migration in vitro and in a thioglycolate-induced perito-
nitis model in vivo.47,87 Also, a C-terminal domain MMP-9–
binding peptide, CRVYGPYLLC (or CRV), inhibited the interac-
tion between MMP-9 and �V�5-integrin, resulting in reduced
angiogenesis and tumor invasion.50 Finally, a cyclic peptide,
CTTHWGFTLC, discovered by phage display technology as a
selective gelatinase inhibitor, could block leukemia cell migration
and tumor growth in a gelatinase-dependent manner.87,137 Selective
antagonists of the MMP-9/�M�2-integrin interaction may be thera-
peutic not only in leukemias but also in other types of malignancies
where tumor-infiltrating leukocytes enhance tumor growth.
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