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Brief report

Bombay phenotype is associated with reduced plasma-VWF levels
and an increased susceptibility to ADAMTS13 proteolysis
James S. O’Donnell, Thomas A. J. McKinnon, James T. B. Crawley, David A. Lane, and Michael A. Laffan

ABO blood group is an important determi-
nant of plasma von Willebrand factor anti-
gen (VWF:Ag) levels, with lower levels in
group O. Previous reports have sug-
gested that ABO(H) sugars affect the
susceptibility of VWF to ADAMTS13 (a
disintegrin and metalloproteinase with
thrombospondin type-1 repeats-13) cleav-
age. To further test this hypothesis, we
collected plasma from individuals with
the rare Bombay blood group. VWF:Ag

levels were significantly lower in Bombay
patients (median, 0.69 IU/mL) than in
groups AB, A, or B (P < .05) and lower
than in group O individuals (median, 0.82
IU/mL). Susceptibility of purified VWF frac-
tions to recombinant ADAMTS13 cleav-
age, assessed using VWF collagen-bind-
ing assay (VWF:CB), was increased in
Bombays compared with either group O
or AB. Increasing urea concentration (0.5
to 2 M) increased the cleavage rate for

each blood group but eliminated the differ-
ences between groups. We conclude that
reduction in the number of terminal sug-
ars on N-linked glycan increases suscep-
tibility of globular VWF to ADAMTS13
proteolysis and is associated with re-
duced plasma VWF:Ag and VWF:CB lev-
els. (Blood. 2005;106:1988-1991)
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Introduction

The antigens of the ABO system (A, B, and H) consist of complex
carbohydrate molecules. H (Fuc �132 Gal �134 GlcNAc �13)
antigen is an essential carbohydrate acceptor for either �-1,3-N-
acetylgalactosaminyltransferase (A transferase) or �-1,3-galactosyl-
transferase (B transferase), which are both encoded by the ABO
locus (9q34).1 In group A, B, or AB individuals, the A and B
transferases convert precursor H antigen into either A (GalNAc
�133 [Fuc �132] Gal� 134 GlcNAc �13) or B (Gal �133
[Fuc �132] Gal� 134 GlcNAc �13) determinants, respectively.
In group O individuals, the O allele does not encode any functional
transferase enzyme so that they continue to express terminal H
structures only.2 In human tissues, H antigen can be synthesized by
2 distinct �-1,2-fucosyltransferases. One is the H gene (FUT1)–
encoded H enzyme that regulates expression of ABH antigens in
red blood cells.3 The other is the Secretor gene (FUT2)–encoded Se
enzyme that regulates expression of ABH antigens in the gastroin-
testinal tract and secretions.4 Individuals with the very rare
Bombay phenotype are non-Secretors and also fail to express H
transferase (FUT 1).5 Such people cannot synthesize A or B
antigenic structures regardless of their ABO blood group genotype,
and ABH antigens are absent from both their erythrocytes and
secretions.6 Para-Bombay individuals also fail to express H trans-
ferase, but do express the FUT2 (Secretor)–encoded �-1,2-
fucosyltransferase, so that ABH antigens are present in their
secretions but not on erythrocytes.6,7

It is well established that ABO blood group exerts a major
quantitative effect on plasma von Willebrand factor (VWF) levels,
with significantly lower levels in group O individuals.8,9 Moreover,
ABH antigenic determinants have been identified on the N-linked

glycans of circulating VWF according to the blood group of the
individual.10 However, the mechanism through which these gly-
cans influence plasma-VWF antigen (VWF:Ag) levels remains
unclear. Animal studies have shown that VWF glycans may
influence rate of hepatic clearance,11 and previous data suggested it
may be mediated by the H antigen.12 On the other hand, Bowen
recently reported that VWF of different ABO blood groups exhibited
different susceptibility to specific cleavage by ADAMTS13 (a
disintegrin and metalloproteinase with thrombospondin type-1
repeats-13) (O � B � A � AB).13 To further investigate how
glycan expression on VWF influences plasma VWF:Ag levels, we
have collected plasma samples from a series of Bombay and
para-Bombay individuals. As these individuals lack the H antigen,
they provide a critical test of current hypotheses. We report the
novel observation that Bombay phenotype is associated with
plasma-VWF levels similar or lower than group O. In addition, we
demonstrate that Bombay VWF demonstrates significant increased
susceptibility to cleavage by ADAMTS13, via a conformation-
dependent mechanism.

Study design

VWF glycans, VWF antigen, and VWF multimer distribution

Plasma samples from 47 anonymized individuals with Bombay blood
groups were collected from blood transfusion centers. No clinical details on
these individuals were available. The Bombay (n � 30) and para-Bombay
(n � 17) phenotype of each case was established by serologic testing.
Plasma samples previously collected from a series of healthy volunteer
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donors (n � 169; 64 group A; 18 group B; 15 group AB; and 72 group O)
were used as controls. Bombay and para-Bombay plasma samples were
tested for evidence of H on VWF expression by Western blotting, and using
a modified sandwich enzyme-linked immunosorbent assay (ELISA) tech-
nique as previously described.12 In preliminary experiments, we established
that the polyclonal rabbit anti–human VWF antibody used in this ELISA
was not influenced by VWF glycan (data not shown). Plasma VWF:Ag
levels and multimer analyses were performed as previously described.12

VWF collagen-binding assay (VWF:CB) was performed using a commer-
cial ELISA method (Technoclone, Surrey, United Kingdom) in accordance
with the manufacturer’s recommendations.

Purification of VWF and ADAMTS13 expression

VWF was purified from human group AB, group O, and Bombay plasmas,
as previously described.13 In brief, group-specific plasma was cryoprecipi-
tated. The pellet was then resuspended in TC buffer (20 mM Tris
[tris(hydroxymethyl)aminomethane]–HCl, 10 mM sodium citrate, pH 7.4)
and passed through a Sepharose CL-2B HiPrep 26/60 gel filtration column
(AmershamPharmacia, Buckinghamshire, United Kingdom). Eluate frac-
tions were assessed for VWF content, multimer distribution, and purity as
previously described.

Recombinant human ADAMTS13 was purified and quantified follow-
ing stable transfection of HEK293 cells. This method has recently been
described in full.14 In a series of parallel experiments, cryodepleted pooled
(groups O, A, B, and AB) human plasma was used as the source of
ADAMTS13.13

Proteolysis of purified VWF by ADAMTS13

ADAMTS13-VWF cleavage assays were performed using either recombi-
nant human ADAMTS13 or plasma-derived ADAMTS13.14 In brief, 5 to 20
nM ADAMTS13 was preincubated with 10 mM BaCl2 for 10 minutes at
37°C. The activated ADAMTS13 was then incubated at 37°C with 8 nM of
comparable blood group–specific (O or AB or Bombay) high-molecular-
weight (HMW)–VWF in reaction mix containing urea (0.5-4 M), 10 mM
BaCl2, 5 mM NaCl, 0.5 mM CaCl2, and 15 mM Tris-HCl (pH 7.8). At
specific time points, subsamples were removed and VWF proteolysis
analyzed using VWF:CB and VWF multimer pattern. For plasma-derived
ADAMTS13, proteolysis of blood group–specific (O versus AB versus
Bombay) HMW-VWF was carried out essentially as previously described.13

Results and discussion

In both Bombay and para-Bombay individuals, we found no
evidence of H antigen on VWF, confirming that both phenotypes
are associated with an alteration in the glycan structure of
circulating VWF distinct to that observed in normal plasma VWF
(Figure 1A). In keeping with previous reports,8,9 we observed a
significant effect of ABO blood group on plasma VWF:Ag levels,
with significantly lower levels in group O individuals (Figure 1B)
compared with non-O. However, we also demonstrated that
VWF:Ag levels in Bombay patients (median VWF:Ag � 0.69
IU/dL) were significantly lower than in groups AB, A, or B
(P � .05). Moreover, Bombay VWF:Ag levels were also lower
than in group O individuals (median VWF:Ag � 0.82 IU/dL),
although this difference failed to achieve statistical significance
(P � .133; Mann-Whitney analysis) (Figure 1B). Bombay and
para-Bombay phenotypes result from null mutations at the FUT1
and FUT2 loci, which are both located on chromosome 19,3,4

remote from the ABO locus on chromosome 9. Consequently, this
effect of Bombay phenotype on plasma-VWF levels is conclusive
evidence that the effect of ABO group on plasma VWF:Ag levels is
due to a direct functional effect of the ABH determinants on VWF,

rather than linkage disequilibrium between the ABO locus and
another unidentified VWF regulatory locus.

Through cleavage at the Tyr1605-Met1606 bond within the
VWF A2 domain, ADAMTS13 regulates plasma-VWF multimer
composition.15 In keeping with a previous report,13 we found group
O VWF was cleaved significantly more quickly than group AB. If
the ABO effect on plasma-VWF level is mediated by susceptibility
to ADAMTS13 cleavage, then cleavage of Bombay VWF should
be at least as rapid as that of group O. In fact, we demonstrated that
Bombay HMW-VWF is cleaved significantly faster than either
group O or group AB (P � .001) (Figure 2A-C). This marked
difference was apparent over the full range of ADAMTS13
concentrations studied (5-20 nM) (data not shown). In a parallel set
of experiments, cryodepleted plasma was used as the source of

Figure 1. Effect of Bombay phenotype on plasma-VWF glycan expression,
plasma VWF:Ag level, and plasma-VWF multimer composition. (A) The amount
of H antigen expressed per unit VWF was measured in a series of healthy individuals
(group O, n � 72; group A, n � 64; group AB, n � 15) and in Bombay (n � 30) or
para-Bombay (n � 17) individuals using a modified sandwich ELISA. Each plasma
sample was tested in duplicate at 3 dilutions, and results represent means � SEM.
Using similar methodologies, no A or B antigen expression was detected on Bombay
or para-Bombay VWF (data not shown). In some cases the SEM cannot be seen due
to its small size. (B) Plasma VWF:Ag levels were measured by ELISA. Median values
for each group are shown. VWF:Ag levels were significantly lower in Bombay
compared with groups AB, A, and B (***P � .001, **P � .01, and *P � .05, respec-
tively). Among the blood group A individuals, genotype (A1A1, A1O1, or A2O1) at the
ABO locus was determined by polymerase chain reaction–restriction fragment length
polymorphism (PCR-RFLP) analysis as previously described.12 Bombay VWF:Ag
levels were significantly lower than those in A1A1 homozygotes or A1O1 heterozy-
gotes (P � .01). Although previous studies have demonstrated an effect of Secretor
blood group on plasma-VWF levels, we found no difference in plasma VWF:Ag levels
between para-Bombay (Secretor) and Bombay (non-Secretor) individuals (data not
shown). (C) Plasma multimer analysis of 4 Bombay individuals (B1 to B4) compared
with 2 healthy controls. No loss of HMW-VWF multimers was apparent in the Bombay
individuals. (D) Plasma VWF:CB levels were also significantly reduced in Bombay
plasmas (median VWF:CB � 71 IU/dL), compared with group O (median VWF:
CB � 88 IU/dL; P � .04, Mann-Whitney). However, as shown for the 47 Bombay
individuals, there remained a good correlation between VWF:Ag and VWF:CB. NP
indicates normal plasma.
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ADAMTS13. Once again, Bombay HMW-VWF was significantly
more susceptible to proteolysis (data not shown). The mechanism
through which ABO blood group influences susceptibility to
cleavage by ADAMTS13 remains unknown, but Tyr1605-Met1606
bond is flanked by 2 N-linked (asparagine 1515 and 1574) and 5
O-linked (threonine 1468, 1477, 1487, and 1679, and serine 1486)
potential glycosylation sites.16

Previous studies have demonstrated that N-linked glycan struc-
tures directly influence the folding of glycoproteins by reducing
conformational freedom of the local peptide backbone.17,18 We
hypothesized that glycan changes may alter the conformation of
VWF and thus alter accessibility to the ADAMTS13 cleavage site.
To investigate this hypothesis, we repeated ADAMTS13 cleavage
assays over a range of urea concentrations (0.5-4 M) to mimic
changes in shear forces responsible for unraveling VWF multimer.
As urea concentration increased, we found that the rate of VWF
proteolysis increased for each of the different blood groups studied,
but Bombay VWF continued to be cleaved most quickly (Figure
2D). However, as the concentration of urea progressively in-
creased, the differential effects observed between AB, O, and
Bombay became less apparent. This observation suggests that
oligosaccharide chain composition may influence the conformation
of VWF, such that removal of terminal sugars allows the A2
domain to adopt a conformation more permissive for cleavage by
ADAMTS13. Alternatively, the glycan structure of VWF may
influence the ability of HMW-VWF multimers to unwind in vivo in
response to shear stress.

Reduction in the number of sugars on the oligosaccharide
chains of VWF is clearly associated with an increased susceptibil-
ity to cleavage by ADAMTS13. Whether this susceptibility to
ADAMTS13 proteolysis is responsible for a quantitative effect on
plasma VWF:Ag levels remains to be determined, as the magnitude
of the Bombay effect on cleavage is not clearly matched by a
comparable effect on plasma-VWF level. Furthermore, it is interest-
ing that despite the increased rate of cleavage, plasma multimer
analysis in Bombay and para-Bombay individuals appeared nor-
mal. In particular, we observed no loss of HMW multimers as seen
in typical patients with type 2A von Willebrand disease (VWD),19

and the ratio of VWF:CB to VWF:Ag (CBA/Ag) was similar to that
observed in other blood groups (Figure 1C-D).9 This apparent
paradox of increased susceptibility to ADAMTS13, yet normal
plasma multimer distribution, has been previously described in
association with the Tyr1584Cys polymorphism of VWF.20,21 The
paradox may reflect the fact that the increased ADAMTS13
susceptibility associated with both Tyr1584Cys and the Bombay
phenotype is markedly less than that arising from classic type 2A
mutations.21 Further studies are required to clarify how VWF
proteolysis by ADAMTS13, plasma multimer distribution, and
VWF clearance are integrated in vivo.
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