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V�2-J� rearrangements are frequent in precursor-B–acute
lymphoblastic leukemia but rare in normal lymphoid cells
Tomasz Szczepański, Vincent H. J. van der Velden, Patricia G. Hoogeveen, Maaike de Bie,
Daniëlle C. H. Jacobs, Elisabeth R. van Wering, and Jacques J. M. van Dongen

The frequently occurring T-cell receptor
delta (TCRD) deletions in precursor-B–
acute lymphoblastic leukemia (precursor-
B–ALL) are assumed to be mainly caused
by V�2-J� rearrangements. We designed
a multiplex polymerase chain reaction
(PCR) assay with 61 J � primers and iden-
tified clonal V �2-J� rearrangements in
141 of 339 (41%) childhood and 8 of 22
(36%) adult precursor-B–ALL. A signifi-
cant proportion (44%) of V �2-J� rear-
rangements in childhood precursor-B–
ALL were oligoclonal. Sequence analysis

showed preferential usage of the J �29
gene segment in 54% of rearrangements.
The remaining V �2-J� rearrangements
used 26 other J � segments, which in-
cluded 2 additional clusters, one involv-
ing the most upstream J � segments (ie,
J�48 to J �61; 23%) and the second clus-
ter located around the J �9 gene segment
(7%). Real-time quantitative PCR studies
of normal lymphoid cells showed that V �2
rearrangements to upstream J � seg-
ments occurred at low levels in the thy-
mus (10 �2 to 10�3) and were rare (gener-

ally below 10 �3) in B-cell precursors and
mature T cells. V �2-J�29 rearrangements
were virtually absent in normal lymphoid
cells. The monoclonal V �2-J� rearrange-
ments in precursor-B–ALL may serve as
patient-specific targets for detection of
minimal residual disease, because they
show high sensitivity (10 �4 or less in
most cases) and good stability (88% of
rearrangements preserved at relapse).
(Blood. 2004;103:3798-3804)
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Introduction

Rearrangements of T-cell receptor (TCR) delta(TCRD) genes
represent one of the earliest events in normal T-cell develop-
ment.1-3 However, recombinations inTCRD genes are not fully
restricted to the T-cell lineage. The presence of cross-lineage
TCRD gene rearrangements is a frequent phenomenon both in
childhood and adult precursor-B–acute lymphoblastic leukemia
(precursor-B–ALL).4-6 Nevertheless, the spectrum ofTCRD
gene rearrangements in precursor-B–ALL is very limited, with
80% of detected rearrangements representing incomplete V�2-
D�3 or D�2-D�3 joinings.5,7,8 Similarly, only D�2-D�3 and
V�2-D�3 joinings can be found in normal B-cell precursors or
even in mature B cells.9,10 Moreover, exactly the same types of
incomplete TCRD gene rearrangements can be induced in
nonlymphoid tissues transfected in vitro with basic helix-loop-
helix transcription factors.11 Interestingly, V�2-D�3 rearrange-
ments in precursor-B–ALL are prone to continuing rearrange-
ments, particularly to J� gene segments with concomitant
deletion of the C� exons and subsequent V�-J� recombination
(Figure 1A).4,5,9,12-14Our detailed Southern blot study indicated that
at least 40% ofTCRD alleles in precursor-B–ALL are deleted,
which might be largely due to V�2-J� rearrangements.5 Limited,
mainly qualitative data indicate that V�2-J� rearrangements are
infrequent in normal lymphoid tissues.15,16 Other immunobiologic
characteristics of V�2-J� rearrangements in normal and malignant
lymphoid cells are largely unknown.

We developed a multiplex polymerase chain reaction (PCR)
strategy for easy identification and characterization of clonal
V�2-J� gene rearrangements in a large series (n� 361) of
precursor-B–ALL. Subsequently, we investigated the presence of
the most frequent V�2-J� rearrangements in various types of
normal lymphoid tissues. Finally, we evaluated the sensitivity and
stability of V�2-J� rearrangements as real-time quantitative (RQ)–
PCR targets for detection of minimal residual disease (MRD).17

Patients, materials, and methods

Patients

Bone marrow (BM) or peripheral blood (PB) samples from 339 children
with precursor-B–ALL were obtained at initial diagnosis (age range, 1.5
months to 15.9 years). Immunologic marker analysis revealed 12 pro-B-
ALL, 226 common ALL, and 101 pre-B–ALL.18

In addition, diagnosis samples from 22 adult precursor-B–ALL were
analyzed. The clinical, immunophenotypic, and immunogenotypic charac-
teristics of these adult patients were reported previously.6

Patient samples were obtained after informed consent according to the
guidelines of the Medical Ethics Committee of the Erasmus MC, Rotterdam.

Southern blot analysis

Mononuclear cells (MNCs) were isolated from BM or PB samples by
Ficoll-Paque centrifugation (density, 1.077 g/cm3; Pharmacia, Uppsala,
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Sweden). DNA was isolated from fresh or frozen MNC fractions as
described previously.19,20 Fifteen micrograms of DNA were digested with
the appropriate restriction enzymes (Pharmacia), size-separated in 0.7%
agarose gels, and transferred to Nytran-13N nylon membranes (Schleicher
& Schuell, Dassel, Germany) as described.19 The configuration of the
TCRD genes was analyzed with the TCRDJ1 and TCRDV2 probes (DAKO,
Carpinteria, CA) in BglII, EcoRI, or HindIII digests.8 Southern blot analysis
was successfully performed in 208 precursor-B–ALL.

Primer design and heteroduplex PCR analysis

V�2 and D�2 primers have been developed by the BIOMED-2
Concerted Action BMH4-CT98-3936 “PCR-based clonality studies for
early diagnosis of lymphoproliferative disorders.”21 Based on the
available nucleotide sequence of the human 3� terminal end of the
TCRA/D locus (European Molecular Biology Laboratory [EMBL]
accession no. M94081),22 61 J� primers compatible with the V�2 primer
were designed using OLIGO 6.0 software (developed by Dr W. Rychlik;
Molecular Biology Insights, Cascade, CO) and applying previously
described guidelines.23 The sequences of the primers and the composi-
tion of 7 V�2-J� multiplex PCR tubes are available upon request.

The multiplex V�2-J� PCR analyses were performed in all 339 patients,
essentially as described previously.6,23 In each 50 �L PCR reaction, 100 ng
DNA sample, 10 pmol of the 5� and 3� oligonucleotide primers, and 1 unit
AmpliTaq Gold polymerase (Applied Biosystems, Foster City, CA) were
used. PCR conditions were initial denaturation for 10 minutes at 94°C,
followed by 35 cycles of 45 seconds at 92°C, 90 seconds at 60°C, and 2
minutes at 72°C using a Perkin-Elmer 480 thermal cycler (Applied
Biosystems). After the last cycle an additional extension step of 10 minutes
at 72°C was performed. Appropriate positive and negative controls were
included in all experiments.23 Heteroduplex analysis of PCR products was
performed as described previously.24

The presence of clonal V�2-D�3 and D�2-D�3 gene rearrangements
was tested using our classical monoplex approach.23 Multiplex D�2-J�
PCR was performed in 11 patients, preselected based on Southern blot and
PCR information (ie, germline V�2 allele with deleted D�3/J�1 area and
absence of clonal V�2-J� rearrangements).

Comparative heteroduplex analysis of PCR products

Comparative heteroduplex analysis of V�2-J� PCR products at diagnosis
and relapse concerned 43 of 91 relapsed precursor-B–ALL patients,25

selected for the presence of V�2-J� rearrangements at diagnosis. The
relapse samples were first analyzed in a monoplex PCR with those primer
combinations that showed clonal PCR products at diagnosis. When the
clonal PCR product was also found at relapse, its identity was subsequently
compared with the PCR product found at diagnosis by mixed heteroduplex
analysis—that is, mixing of the diagnosis and relapse PCR products
followed by heteroduplex analysis.25,26 When clonal PCR products found at
diagnosis were undetectable at relapse, the relapse sample was analyzed
with all 7 V�2-J� multiplex tubes.

Sequence analysis of V�2-J� rearrangements

Direct sequencing of V�2-J� rearrangements was performed with the V�2
primer using the dye-terminator cycle sequencing kit with AmpliTaq DNA
polymerase FS on an ABI 377 sequencer (Applied Biosystems) as
previously described.27 When heteroduplex PCR analysis revealed more
than 2 clonal bands (ie, 2 homoduplexes or an additional upper band
resulting from extension to a downstream J� segment), the bands were
excised from the polyacrylamide gel, eluted, and directly sequenced as
described before.28 Recognition of D�2 and D�3 segments in V�2-J�
junctional regions required at least 4 and 5 consecutive matching nucleo-
tides, respectively.29

RQ-PCR detection of V�2-J� rearrangements
in normal tissue samples

Normal tissue samples tested for the presence of V�2-J� rearrangements
included normal PB, E-rosette–positive PB cells (T cells), E-rosette–

negative PB cells (B cells, natural killer [NK] cells, and monocytes), normal
BM, sorted BM B cells and B-cell precursors, tonsils, lymph nodes,
thymuses, and postchemotherapy regenerating BM samples, which are
known to contain high frequencies of normal precursor-B-cells.30,31 When-
ever possible, at least 2 different samples were tested per category, each
sample in triplicate. To analyze the presence of V�2-J� gene rearrange-
ments in normal tissue samples, the germline V�2 TaqMan probe (5�-
AGACCCTTCATCTCTCTCTGATGGTGCAAGTA-3�) and the germline
V�2 forward primer (5�-TGCAAAGAACCTGGCTGTACTTAA-3�) were
used together with a germline reverse J� primer. Based on the frequencies
of particular V�2-J� gene rearrangements in precursor-B–ALL (“Results” ),
J�9, J�29, J�58, and J�61 primers were selected for analysis in normal
lymphoid cells. To determine the efficiency of amplification and sensitivity
of the RQ-PCR, diagnostic DNA from precursor-B–ALL containing the
same V�2-J� gene rearrangements was 10-fold serially diluted (10�1

down to 10�6) into DNA from the cell line CEM, known to have 2
deleted TCRD alleles. To correct for the quantity and quality (amplifiabil-
ity) of DNA, RQ-PCR analysis of the albumin gene was used.32 Bovine
serum albumin was added to each RQ-PCR reaction to prevent
inhibition.33

RQ-PCR detection of patient-specific V�2-J� rearrangements

RQ-PCR–based detection of clonal V�2-J� rearrangements relied on the
allele-specific oligonucleotide (ASO) primer approach as described previ-
ously.34-36 The above-described germline V�2 TaqMan probe and V�2
forward primer were combined with the ASO primers positioned at the
junctional regions, preferably covering the D�3-J�, and sometimes also the
V�2-D�3 junction. A standard annealing temperature of 60°C was used.
The serial dilutions (10�1 down to 10�6) of diagnostic DNA into control
MNC DNA were subjected to RQ-PCR analysis together with negative
controls (H2O and control MNC DNA). Each dilution step was analyzed in
triplicate. RQ-PCR data were analyzed as described previously.37

Results

Clonal TCRD gene rearrangements
in childhood precursor-B–ALL

Based on the combined Southern blot and PCR heteroduplex
results, clonal V�2 rearrangements were found in 69% (144 of 208)
of childhood precursor-B–ALL cases (Figure 1B). Clonal V�2-D�3
rearrangements were detected in 40% (83 of 208) of leukemias. In
an additional 7% (14 of 208) of cases, Southern blot indicated the
presence of a clonal V�2-D�3 recombination that turned out to be
oligoclonal/polyclonal by PCR analysis.6,38 V�2-J� rearrange-
ments were found by PCR in 46% (95 of 208) of cases. Conse-
quently, 27% (57 of 208) of precursor-B–ALL had both V�2-D�3
and V�2-J� rearrangements (Figure 1).

In 56% (53 of 95) of V�2-J�-positive precursor-B–ALL,
V�2-J� joinings were monoclonal (in 83% monoallelic), but in a
significant proportion (42 of 95; 44%) the V�2-J� rearrangements
were oligoclonal. Oligoclonality was assumed either when the
Southern blot revealed presence of rearranged bands of different
densities (22 cases) or when the number of PCR-detected clonal
V�2-J� and V�2-D�3 recombinations exceeded the number of V�2
rearrangements detected by Southern blot analysis (20 cases).

Clonal D�2-D�3 rearrangements were detected in 10% (20 of
208) of precursor-B–ALL cases. Monoclonal D�2-J� rearrange-
ments were found in only 3 of the 11 leukemias with a germline
V�2 allele but a deleted D�3/J�1 region.
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Spectrum of V�2-J� rearrangements in childhood precursor-B–ALL

In the group of 339 childhood precursor-B–ALL cases studied with
our multiplex PCR strategy, a total of 172 clonal V�2-J� rearrange-
ments were detected in 141 cases (42%). The frequency of V�2-J�
joinings was slightly lower in pro-B-ALL (3 of 12; 25%) as
compared with common ALL (95 of 226; 42%) and pre-B–ALL (43
of 101; 43%), but this was not statistically significant.

Sequence analysis of the 172 clonal V�2-J� PCR products
revealed that 27 different J� segments were used (Figure 2A).
Surprisingly, the J�29 gene segment was present in 54% (93 of
172) of all clonal V�2-J� joinings (Figure 2). Together with J�30
and J�31 segments, the J�29 segment formed a first cluster

comprising 59% of V�2-J� gene rearrangements. A second cluster
frequently involved in V�2-J� recombination concerned the J�
segments most proximal to the TCRD locus. Altogether, 10 of the
most upstream J� segments were found in 23% (40 of 172) of
V�2-J� joinings, with J�48, J�54, J�58, and J�61 segments used
most frequently (Figure 2). The third and most downstream
cluster was located around the J�9 segment and comprised 7%
(12 of 172) of V�2-J� rearrangements. In line with these results,
the 3 identified D�2-J� rearrangements contained the J�9, J�29,
and J�58 gene segments, respectively.

Most of the V�2-J� rearrangements (79%; 132 of 167 fully
sequenced clonal PCR products) contained a part of the D�3 gene
segment. In striking contrast, remnants of the D�2 gene segment
were found in only 8% (13 of 167) of the V�2-J� sequences.
Overall sizes of the V�2-J� junctional regions were extensive, with
18.6 nucleotides on average.

V�2-J� rearrangements in adult precursor-B–ALL

Heteroduplex PCR analysis showed a total of 9 clonal V�2-J�
rearrangements in 8 of 22 (36%) adult precursor-B–ALL cases.
Interestingly, 7 of 9 V�2-J� junctions (78%) contained the J�29
gene segment. The remaining 2 V�2-J� rearrangements con-
tained J�48 and J�54, respectively. A D�3 gene segment was
identified in 6 V�2-J� junctions. Based on combined Southern
blot and PCR assessment, monoclonality in the TCRD/A locus
was assumed in all except 1 precursor-B–ALL case with a
subclonal V�2-J� rearrangement.

V�2-J� rearrangements in normal lymphoid tissues

Using RQ-PCR assays with the germline V�2 forward primer, the
germline V�2 TaqMan probe, and 1 of 4 reverse germline J�
primers (J�61, J�58, J�29, and J�9), according to the most
frequent V�2-J� rearrangements in precursor-B–ALL, we demon-
strated that such preferential J� usage is not characteristic for
normal lymphoid tissues. Relatively high levels of V�2-J�58 and
V�2-J�61 rearrangements (10�3 to 10�2) were only found in
thymus samples (Table 1 and Figure 3). Ten-fold lower levels (10�4

to 10�3) were repeatedly detected in PB, particularly in a fraction of
E-rosette–selected T cells. Lower frequencies (generally 10�4 or
less) of V�2-J�58 and V�2-J�61 rearrangements were detected in
normal BM, lymph nodes, and tonsils. V�2-J�29 rearrangements

Figure 1. TCRD/A gene rearrangements in precursor-B–ALL. (A) Consecutive
rearrangements in the TCRD/A locus involving the V�2 gene segment that are
characteristic for precursor-B–ALL. The main pathway concerns consecutive V�2-
D�33 V�2-D�3-J� recombinations. D�2-D�3 and D�2-J� gene rearrangements can
also occur, albeit at much lower frequencies. Solid boxes below the gene segments
represent the probes used for Southern blot hybridization. (B) Southern blot analysis
with TCRDV2 probe in 10 precursor-B–ALL samples. V�2-D�3 and/or V�2-J�29 gene
rearrangements in cases 5602, 5675, 5683, and 5696 are monoclonal. The presence
of several rearranged bands of different densities in cases 5515, 5647, 5662, and
5698 is consistent with oligoclonality. Both V�2 alleles in case 5670 are deleted, while
case 5565 has both V�2 alleles in germline (G) configuration.

Figure 2. Spectrum of V�2-J� rearrangements in childhood precursor-B–ALL. (A) Bar diagram summarizing the usage of J� segments in V�2-J� rearrangements in
precursor-B–ALL. (B) Schematic diagram of the V�2 gene segment joined to the J�29 gene segment via a junctional region. The presented V�2-J�29 junctional region
sequences are derived from precursor-B–ALL and illustrate the deletion of nucleotides from the germline sequences as well as the size and composition of the junctional
regions. D� gene segments and inserted nucleotides are indicated by uppercase and small uppercase letters, respectively. (C) Multiplex heteroduplex PCR analysis
with the V�2 primer in combination with 8 J� primers (mix 3) showed clonal V�2-J� homoduplexes (ho) in all samples tested. Sequence analysis (B) showed that all
these rearrangements involved the J�29 gene segment. The presence of heteroduplexes (he) in cases 5199, 5504, and 5609 indicated the presence of double
V�2-J�29 rearrangements.
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were found in thymus, lymph node, and tonsil samples at very low
levels (10�5 to 10�4) but were virtually absent in BM and PB.
V�2-J�9 rearrangements were virtually undetectable in all tested
normal lymphoid samples, including the thymus (Table 1).

Stability of V�2-J� rearrangements in 43 precursor-B–ALL
at relapse

Forty-three relapsed precursor-B–ALL cases with a total of 56
clonal V�2-J� rearrangements at diagnosis were also evaluated at
relapse. Altogether, 34 of the 56 (61%) clonal V�2-J� rearrange-
ments found at diagnosis were stable at relapse. In 28 precursor-B–
ALL (65%), at least 1 V�2-J� rearrangement was preserved at
relapse. The stability was markedly different between monoclonal
and oligoclonal V�2-J� gene rearrangements, with 21 of 24
monoclonal V�2-J� joinings being stable (88%) as compared with
only 13 of 32 oligoclonal rearrangements (41%).

Owing to clonal evolution phenomena, 22 V�2-J� rearrange-
ments were lost in 18 precursor-B–ALL. In 13 cases, this con-
cerned either “ regression” of (sub)clonal rearrangements to germline
configuration or disappearance (deletion) of the V�2-J� joinings,
probably owing to secondary V�-J� recombinations. In 5 precursor-
B–ALL, new V�2-J� rearrangements were detected at relapse. In 1
of these 5 cases, the V�2-J�23 sequence at diagnosis and the
V�2-J�29 sequence at relapse shared a common V�2-D�3 stem,
confirming their origin from a common (pre)leukemic progenitor
cell with a V�2-D�3 rearrangement. In the remaining 4 cases, the
V�2-D�3 junctional regions and the J� segments of the V�2-J�
rearrangements at diagnosis and at relapse were completely
different, suggesting that the common leukemic progenitor prob-
ably had germline TCRD genes. It is tempting to speculate that
some of the new V�2-J� rearrangements at relapse might have
been already present at diagnosis at low frequency as has been
described in literature for other immunoglobulin (Ig)/TCR gene
rearrangements.39-41

V�2-J� rearrangements as MRD-PCR targets in precursor-B–ALL

V�2-J� rearrangements were tested as MRD-PCR targets in
TaqMan-based RQ-PCR assays employing the germline V�2
forward primer and the germline V�2 TaqMan probe together with
ASO reverse primers. In 21 of 32 cases (66%), a quantitative range

of 10�4 was achieved at the routine annealing temperature of 60°C
(ie, requiring no optimization). In 27 of 32 cases (84%) the
sensitivity was at least 10�4. Very low levels of background
amplification in normal MNCs was found in only 7 cases (22%). If
observed, limited sensitivity of the MRD-PCR assay was mainly
due to the presence of the V�2-J� rearrangement in a subclone
only, as indicated by the relatively high threshold cycle (CT) value
of the 10�1 dilution.

Discussion

Our study indicates that the V�2 gene segment is a “hot spot” for
V(D)J recombination in precursor-B–ALL. This single gene seg-
ment is involved in various gene rearrangements in approximately
70% of precursor-B–ALL. By combined Southern blot and PCR
analyses, V�2-D�3 joinings were found in 40%, whereas V�2-J�
rearrangements were found in 42% of precursor-B–ALL. In 27% of
cases, V�2-D�3 and V�2-J� joinings occurred simultaneously. The
junctional regions of most (79%) V�2-J� rearrangements con-
tained the D�3 segment, which indicates that recombination to J�
was preceded by a V�2-D�3 rearrangement (Figure 1). D�2-D�3
rearrangements were found in only 10% of precursor-B–ALL, and
the D�2 segment was found in only 8% of V�2-J� junctional
regions. Clonal D�2-J� rearrangements occur even more seldom,
because we were able to detect clonal D�2-J� PCR products in
only 3 precursor-B–ALL (less than 2%). Thus, V�2, D�3, and
several J� genes are preferentially involved in recombinations in
the TCRD/A locus in precursor-B–ALL, with the main pathway
being V�2-D�3 3 V�2-D�3-J� (Figure 1). The next step might
concern secondary V�-J� rearrangements, deleting the whole
TCRD locus as well as preexisting V�2-J� joinings.5,14 The limited
number of TCRD/A gene segments involved in these rearrange-
ments may be explained by differential accessibility of gene
segments within the TCRD locus in precursor-B–ALL. Some
TCRD regions, particularly V�1 and all J� gene segments, seem to
be fully closed for the persistent activity of the V(D)J recombinase
in precursor-B–ALL, because rearrangements involving these gene
segments were reported only anecdotally.42-44

The spectrum of J� segment usage in V�2-J� rearrangements in
precursor-B–ALL was not random. The single J�29 segment was

Table 1. V�2-J� rearrangements in normal lymphoid tissues as compared with precursor-B—ALL

V�2-J�61 V�2-J�58 V�2-J�29 V�2-J�9

Precursor-B—ALL, % of V�2-J�-positive cases 4.4 3.8 53.8 6.3

CD19�/CD10��/CD20� sorted normal BM B-cell precursors; n � 1*† � � � �

CD19�/CD10�/CD20�/� sorted normal BM B-cell precursors; n � 1† � � � �

CD19�/CD10�/CD20� sorted normal BM B cells; n � 1† � � � �

Regenerating BM; n � 3‡ � � � �

Normal BM; n � 3 �/� � � �

Normal PB; n � 2 � � � �

E-rosette-positive PB MNCs; n � 1 � �/� � �

E-rosette-negative PB MNCs; n � 1 � � � �

Tonsil; n � 2 � � � �

Lymph node; n � 3 � �/� � �

Thymus; n � 3 �� �/�� � �

V�2-J� rearrangements were quantified by RQ-PCR, and the obtained values were grouped into the following categories: ��, V�2-J� levels more than 10�3; �, V�2-J�
levels between 10�4 and 10�3; �, V�2-J� levels between 10�5 and 10�4; �, V�2-J� levels 10�5 or less or undetectable.

*Numbers correspond to number of samples tested.
†Normal BM was stained with CD10, CD20, and CD19 monoclonal antibodies, and the indicated cell populations were sorted using a Diva flow cytometer (BD Biosciences,

San Jose, CA).
‡Regenerating BM after cessation of chemotherapy is known to contain high frequencies of precursor-B cells (5% to 30%).30,31
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found in 54% of all V�2-J� joinings. Such nonrandom usage of J�
segments was previously suggested by Southern blot data but was
never confirmed at the PCR and sequence level.4,13 The remaining
V�2-J� sequences contained 26 different J� segments, most of
them belonging to 2 additional clusters. The preferential usage of
J�29 might be related to the fact that the recombination signal
sequence (RSS) of J�29 is fully identical to the consensus RSS.
However, no preferential usage was found for the other 2 J� gene
segments with a full consensus RSS (ie, J�15 and J�34). Appar-
ently, a combination of several factors determines the preferential
usage of several J� gene segments, such as (1) proximity to the
TCRD locus (eg, for J�61, J�58, J�54, and J�48); (2) leukemia-
associated differential accessibility, potentially related to specific

(yet unknown) transcription factors; and (3) presence of a consen-
sus RSS.

V�2-J� rearrangements can occur at low levels in normal
lymphoid tissues (Table 1). They are relatively frequent in the
thymus, where they might represent an infrequent TCRD
deletion pathway for commitment to the TCR�	 lineage.15,16,45

Most of the V�2-J� gene rearrangements in the thymus involved
the most proximal J� genes (in our study represented by J�58
and J�61),15,16 and the frequency of such recombinations ranged
from 10�3 to 10�2. The same spectrum of rearrangements was
detectable at more than 10-fold lower levels (ie, less than 10�3)
in other lymphoid tissues, including PB MNCs, BM, lymph
nodes, and tonsils. In striking contrast, V�2-J�29 and V�2-J�9
joinings were virtually undetectable in normal lymphoid cells
(Table 1). This suggests that the preferential usage of the J�9
and J�29 clusters is a leukemia-specific characteristic in
precursor-B–ALL.

Our multiplex PCR strategy can easily identify clonal V�2-J�
rearrangements that can be applied as PCR targets for MRD
monitoring.46 In fact, based on the limited spectrum of V�2-J�
rearrangements in precursor-B–ALL, the assay for V�2-J� detec-
tion can be further simplified. Using 2 tubes, one with V�2 and
J�29 primers and the second with V�2 and 12 J� primers (J�9,
J�30, J�48, J�49, J�52, J�54, J�55, J�56, J�57, J�58, J�59,
J�61), we could reliably detect 87% of V�2-J� rearrangements
(data not shown). Because the junctional regions of V�2-J�
joinings are extensive, it is relatively easy to design optimal
patient-specific oligonucleotides reaching sensitivities of at least
10�4, which is required for reliable recognition of the MRD-based
risk groups.47,48 Another advantage of V�2-J� rearrangements as
MRD-PCR targets is the extremely low background of polyclonal
V�2-J� joinings in normal BM and PB, irrespective of the
treatment phase.

Many V�2-J� joinings (about 45%) were oligoclonal, compa-
rably to Ig heavy chain gene rearrangements (30% to 40%) and
TCRD gene rearrangements (about 25%) in precursor-B–
ALL.49,50 Monoclonal V�2-J� gene rearrangements are excel-
lent MRD-PCR targets with good stability (88% of monoclonal
rearrangements preserved at relapse) and high sensitivity of at
least 10�4 in virtually all cases. The usage of oligoclonal
V�2-J� rearrangements as MRD-PCR targets is not recom-
mended owing to their low stability at relapse (41%). When the
applied MRD-PCR strategy does not include Southern blotting
for detection of oligoclonality, one might decide to use our
germline V�2-J� RQ-PCR as used for characterization of
polyclonal V�2-J� gene rearrangements in normal tissues
(Figure 3). Based on the obtained high CT values (compared
with monoclonal V�2-J� controls), it is possible to identify
subclonal V�2-J� joinings when they contribute to less than
10% of the tumor load (data not shown).

In conclusion, V�2-J� rearrangements are frequent cross-
lineage recombinations in precursor-B–ALL, which is in striking
contrast to their infrequent occurrence in normal B cells and B-cell
precursors. The spectrum of V�2-J� rearrangements in precursor-
B–ALL is not random with preferential usage of the J�29 gene
segment. The extensive junctional regions, the low background in
normal BM and PB, and the high stability (88%) of monoclonal
rearrangements are the features that favor the usage of monoclonal
V�2-J� rearrangements as principal MRD-PCR targets in approxi-
mately 25% of precursor-B–ALL.

Figure 3. RQ-PCR analysis of V�2-J� rearrangements. (A) Schematic representa-
tion of RQ-PCR analysis of V�2-(D�3)-J� rearrangements. The positions and
sequences of the germline V�2 TaqMan probe, germline V�2 forward primer, and 4
germline J� primers are indicated. (B) Real-time amplification plots of the serial
dilutions of a precursor-B–ALL DNA containing clonal V�2-J�61 gene rearrangement
into DNA of the cell line CEM, known to have 2 deleted TCRD alleles. RQ-PCR
analysis was performed using the germline V�2 TaqMan probe, the V�2 forward
primer, and the J�61 primer. Relatively high levels of V�2-J�61 rearrangements were
found in thymus (6 
 10�3). Such rearrangements were also detectable in normal
BM, albeit at low levels (less than 10�4). (C) Real-time amplification plots of the serial
diagnosis DNA dilutions into MNC DNA in precursor-B–ALL. RQ-PCR analysis by use
of the TaqMan technique was performed using a V�2-J�56 rearrangement with the
junctional region-specific primer approach. The reproducible sensitivity in this case
reached 10�5.
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